Mekki HOUBAD

Séries Numériques

Chapitre III d'Analyse III et IV

©Mekki HOUBAD Département de Mathématiques Université Abou Bekr Belkaid Tlemcen 13000 Algérie m.houbad@gmail.com

Table des matières

3	Séri	Séries Numériques							
	3.1 Généralités								
	3.2	ergence Et Propriétés							
		3.2.1	Condition nécessaire et suffisante de convergence	1					
			Propriétés des séries numériques convergente						
	3.3	Séries	A Terme Positif	4					
	3.4	Séries	A Terme Quelconque	12					
		3.4.1	Utilisation du développement asymptotique :	13					

Chapitre 3

Séries Numériques

3.1 Généralités

On rappelle les deux majoration suivante, lorsque x est au voisinage de $+\infty$

$$e^x \ge C \operatorname{st} x^{\alpha}, \forall \alpha \in \mathbb{R}. \quad \ln(x) \le C \operatorname{st} x^{\beta}, \quad \forall \beta > 0$$

Définition 1 (d'une série numérique). Soit $(u_n)_n$ une suite numérique on note par $(S_n)_n$ la suite

$$S_n = \sum_{k=0}^n u_n, \quad \forall n \in \mathbb{N}$$
 (3.1)

1

On appelle une série numérique de terme générale u_n la couple de deux suites (u_n, S_n) liéé par la relation (3.1), S_n st dit la somme partielle jusqu'a le rang n.

On note aussi la série par

$$\sum_{n\geq 0} u_n$$

Définition 2 (la convergence d'une série). On dit que la série

$$\sum_{n>0} u_n$$

est convergente si et seulement si la suite $(S_n)_n$ est convergente

Exemple 1.

$$1. \sum_{n \ge 1} \frac{1}{n(n+1)}$$

on utilise la décomposition en éléments simples on a

$$\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1} \Longrightarrow a = 1, \quad b = -1$$

donc

$$\begin{split} \sum_{n \geq 1} \frac{1}{n(n+1)} &= \lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n(n+1)} = \lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{n+1} \\ &= \lim_{N \to +\infty} \left[\sum_{n=1}^{N} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{n+1} \right] = \lim_{N \to +\infty} \left[\sum_{n=1}^{N} \frac{1}{n} - \sum_{k=2}^{N+1} \frac{1}{k} \right] \\ &= \lim_{N \to +\infty} \left[1 + \sum_{n=2}^{N} \frac{1}{n} - \sum_{k=2}^{N} \frac{1}{k} - \frac{1}{N+1} \right] \\ &= 1 \end{split}$$

2. $\sum_{n\geq 0} (-1)^n$ vaut 0 ou 1 elle n'admet pas une limite, donc elle diverge.

3. $\sum_{n\geq 0} r^n$ avec $r\in \mathbb{R}_+\setminus\{1\}$. Série géométrique, on sais que pour $r\neq 1$

$$\sum_{k=p}^{q} r^k = r^p \frac{1 - r^{q-p+1}}{1 - r}$$

ainsi

$$\sum_{n > 0} r^n = \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r} = \begin{cases} 0 & \text{Si } 0 \le r < 1 \\ +\infty & \text{Si } r > 1 \end{cases}$$

4.
$$\sum_{n>1} \frac{\operatorname{tg}(2^{-n-1})}{\cos(2^{-n})}$$
. On a

$$tg(2^{-n-1}) = \frac{\sin(2^{-n-1})}{\cos(2^{-n-1})} = \frac{\sin\left(\frac{1}{2^{n+1}}\right)}{\cos\left(\frac{1}{2^{n+1}}\right)} = \frac{\sin\left(\frac{1}{2^n} - \frac{1}{2^{n+1}}\right)}{\cos\left(\frac{1}{2^{n+1}}\right)}$$
$$= \frac{\sin\left(\frac{1}{2^n}\right)\cos\left(\frac{1}{2^{n+1}}\right) - \cos\left(\frac{1}{2^n}\right)\sin\left(\frac{1}{2^{n+1}}\right)}{\cos\left(\frac{1}{2^{n+1}}\right)}$$
$$= \sin\left(\frac{1}{2^n}\right) - \cos\left(\frac{1}{2^n}\right)tg\left(\frac{1}{2^{n+1}}\right)$$

et donc

$$\frac{\operatorname{tg}\left(2^{-n-1}\right)}{\cos\left(2^{-n}\right)} = \operatorname{tg}\left(\frac{1}{2^n}\right) - \operatorname{tg}\left(\frac{1}{2^{n+1}}\right)$$

ainsi

$$\sum_{n>1} \frac{\operatorname{tg}\left(2^{-n-1}\right)}{\cos\left(2^{-n}\right)} = \operatorname{tg}\left(\frac{1}{2}\right) - \lim_{n \to +\infty} \operatorname{tg}\left(\frac{1}{2^{n+1}}\right) = \operatorname{tg}\left(\frac{1}{2}\right).$$

5.
$$\sum_{n \ge 1} \frac{(n-2)^2}{n!}$$

Définition 3 (Opérations sur les séries).

1. On définit la somme des deux série $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ la série

$$\sum u_n + v_n.$$

2. On définit le produit de la série $\sum_{n>0} u_n$ par un scalaire λ par

$$\sum_{n>0} \lambda u_n.$$

3. On définit le produit des deux série $\sum_{n>0} u_n$ et $\sum_{n>0} v_n$ la série définie par

$$\sum_{n>0} \sum_{p=0}^{n} u_p v_{n-p}.$$

3.2 Convergence Et Propriétés

Définition 4 (De la convergence). On dit que la série $\sum_{n>0} u_n$ converge vers S si la suite

$$S_n = \sum_{k=0}^n u_k$$

converge ver S. S_n s'appelle la somme partielle de la série.

Définition 5 (De la convergence). On dit que la série $\sum_{n\geq 0} u_n$ converge vers $S = \sum_{n=0}^{+\infty} u_n$ si la suite

$$\forall \varepsilon < 0, \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n \ge N(\varepsilon) \Longrightarrow \left| \sum_{n \ge 0} u_n - S \right| \le \varepsilon$$

qui peut être mise sous la forme

$$\forall \varepsilon < 0, \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n \ge N(\varepsilon) \Longrightarrow \left| \sum_{n=N(\varepsilon)+1}^{+\infty} u_n \right| \le \varepsilon$$

la valeur

$$R_{\varepsilon} = \sum_{n=N(\varepsilon)+1}^{+\infty} u_n,$$

s'appelle le reste le reste de la série.

Proposition 1. Sin on ajoute ou on retranche un nombre finie de termes la nature de la série ne change pas, par contre sa somme (limite de la série) change.

Proposition 2. Soit
$$\sum_{n\geq 0} u_n$$
 et $\sum_{n\geq 0} v_n$ deux série alors

- 1. Si $\sum_{n\geq 0} u_n$ converge et $\sum_{n\geq 0} v_n$ converge alors $\sum_{n\geq 0} u_n + v_n$ converge.
- 2. Si $\sum_{n\geq 0} u_n$ converge et $\sum_{n\geq 0} v_n$ diverge alors $\sum_{n\geq 0} u_n + v_n$ diverge.
- 3. Si $\sum_{n\geq 0} u_n$ diverge et $\sum_{n\geq 0} v_n$ diverge alors on peut rien conclure sur la nature de $\sum_{n\geq 0} u_n + v_n$.

3.2.1 Condition nécessaire et suffisante de convergence

Théorème 1. Soit $\sum_{n\geq 0} u_n$ une série.

- 1. Si $\sum_{n>0} u_n$ converge alors $\lim_{n\to+\infty} u_n = 0$.
- 2. Si $\lim_{n\to+\infty} u_n \neq 0$ alors $\sum_{n\geq0} u_n$ diverge.
- 3. Si $\lim_{n \to +\infty} u_n = 0$ alors on peut rien conclure sur la nature de $\sum_{n>0} u_n$.

Exemple 2. Soit la série
$$\sum_{n\geq 1} \frac{e^n}{n^2+1} (-1)^n$$
, $u_n = \frac{e^n}{n^2+1} (-1)^n$, vu que

$$\lim_{n \to +\infty} \frac{e^n}{n^2 + 1} (-1)^n = + -\infty \neq 0,$$

donc cette série diverge.

3.2.2 Propriétés des séries numériques convergente

Proposition 3. Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux série alors si $\sum_{n\geq 0} u_n$ converge et $\sum_{n\geq 0} v_n$ converge alors $\sum_{n\geq 0} u_n + v_n$ converge ver $\sum_{n\geq 0} u_n + \sum_{n\geq 0} v_n$.

Proposition 4 (Cauchy). On dit que la série $\sum_{n>0} u_n$ est une série de Cauchy si

$$\forall \varepsilon > 0, \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n \ge N(\varepsilon), \quad \forall p \ge 1 \Longrightarrow \left| \sum_{n=N(\varepsilon)+1}^{N(\varepsilon)+p} u_n \right| \le \varepsilon.$$

Proposition 5. Dans \mathbb{R} et \mathbb{C} toute série de Cauchy converge et toute suite convergente est de Cauchy. **Définition 6** (Série absolument convergente).

1. On dit que la série
$$\sum_{n\geq 0} u_n$$
 est absolument convergente si $\sum_{n\geq 0} |u_n|$ converge.

2. On dit que la série
$$\sum_{n\geq 0} u_n$$
 est semi-absolument si $\sum_{n\geq 0} u_n$ converge et $\sum_{n\geq 0} |u_n|$ diverge.

Théorème 2. *Toute suite absolument convergente dans* \mathbb{R} *ou* \mathbb{C} *est convergente.*

Exemple 3. Soit la série $\sum_{n>0} \frac{(-1)^n e^n}{3^n}$, le terme générale $u_n = \frac{(-1)^n e^n}{3^n}$ on a

$$|u_n| = \left| \frac{(-1)^n e^n}{3^n} \right| = \frac{e^n}{3^n} = \left(\frac{e}{3} \right)^n$$

la série du terme générale $\left(\frac{e}{3}\right)^n$ est une série géométrique convergente car $\frac{e}{3} \in]-1,+1[$ donc $\sum_{n\geq 0}|u_n|$ converge et donc $\sum_{n\geq 0}u_n$ est absolument convergente donc elle converge.

3.3 Séries A Terme Positif

Définition 7. On dit que la série $\sum_{n>0} u_n$ est à terme positive si

$$\exists N \in \mathbb{N}: \forall n \geq N: u_n \geq 0.$$

Exemple 4. Soit la série $\sum_{n>0} \frac{e^{-n}}{n^2 - 99}$, vu que

$$\forall n \ge 10: \quad \frac{e^{-n}}{n^2 - 99} \ge 0$$

alors la série $\sum_{n\geq 0} \frac{e^{-n}}{n^2-99}$ est à terme positive.

Proposition 6 (Série géométrique). La série $\sum_{n\geq p} r^n$ converge si et seulement si $r\in]-1+1[$ et dans ce cas on a

$$\sum_{n \ge p} r^n = \frac{r^p}{1 - r}.$$

Proposition 7 (Monotonie). Soit $\sum_{n>0} u_n$ une série à terme positive alors la suite

$$S_n = \sum_{n=0}^n u_n$$

est une suite croissante à partir de certain rang n=N. De plus si $\sum_{n\geq 0}u_n$ est majorée alors elle est convergente.

Exemple 5. Soit la série $\sum_{n\geq 0} u_n$ avec

$$u_n = \frac{e^{-n}}{n!2^n}$$

vu que $u_n \le \frac{1}{2^n}$ alors

$$\sum_{n>0} u_n \le \sum_{n>0} \frac{1}{2^n} = 2$$

donc la série $\sum_{n>0} u_n$ est à terme positive majorée donc elle est convergente.

Proposition 8 (Comparaison). Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux série à terme positive tel que

$$\exists N \in \mathbb{N}: \quad \forall n \geq N \in \mathbb{N}: \quad u_n \leq v_n.$$

- 1. Si $\sum_{n>0} u_n$ diverge alors $\sum_{n>0} v_n$ diverge.
- 2. Si $\sum_{n\geq 0} v_n$ converge alors $\sum_{n\geq 0} u_n$ converge.

Exemple 6. Soit la série à terme positive suivante $\sum_{n\geq 1} \frac{2+\sin(n)}{n^2 3^n}$ on peut faire la majoration

$$\frac{2+\sin(n)}{n^2 3^n} \le \frac{3}{3^n} = \frac{1}{3^{n-1}}$$

la série $\sum_{n>1} \frac{1}{3^{n-1}} = \sum_{n>0} \frac{1}{3^n}$ est une série géométrique convergente donc on utilise le critère de compa-

raison, on en déduit que la série $\sum_{n\geq 1} \frac{2+\sin(n)}{n^2 3^n}$ converge.

Proposition 9 (Avec l'intégrale). Soit $\sum_{n\geq 0} u_n$ une série à terme positive, on définie la fonction f définie

 $de [0, +\infty[dans \mathbb{R}^+ satisfait$

$$\forall n \geq 0: \quad u_n = f(n).$$

Alors la série $\sum_{n\geq 0} u_n$ et l'intégrale $\int_0^{+\infty} f(x)dx$ sont de la même nature.

Exemple 7. Soit la série $\sum_{n>1} \frac{1}{n^{\alpha}}$ on définie la fonction

$$f(x) = \frac{1}{x^{\alpha}}; \quad \forall x \in [1, +\infty[$$

on a

$$\int_{1}^{+\infty} f(x)dx = \int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \lim_{A \to +\infty} \int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$$

$$= \begin{cases} \lim_{A \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{A} & \text{Si } \alpha \neq 1 \\ \lim_{A \to +\infty} \ln(x) \Big|_{1}^{A} & \text{Si } \alpha = 1 \end{cases} = \begin{cases} \lim_{A \to +\infty} \frac{A^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} & \text{Si } \alpha \neq 1 \\ \lim_{A \to +\infty} \ln(A) & \text{Si } \alpha = 1 \end{cases}$$

$$= \begin{cases} -\frac{1}{1-\alpha} & \text{Si } \alpha > 1 \text{ converge} \\ +\infty & \text{Si } \alpha < 1 \text{ diverge} \end{cases}$$

$$+\infty & \text{Si } \alpha = 1 \text{ diverge}$$

donc $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ si et seulement si $\alpha > 1$.

Proposition 10 (Riemann). La série à terme positive $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ dite série de Riemann converge si et seulement si $\alpha > 1$.

Définition 8. Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux série à terme positive, on dit que ces deux séries sont équivalente si les deux terme générales u_n et v_n sont équivalent, autrement dit

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 1,$$

et on note $u_n \sim v_n$.

Proposition 11 (Equivalence). Deux séries à terme positive qui sont équivalente sont de la même nature.

Exemple 8. Soit la série $\sum_{n>1} \frac{(-1)^n n^n}{e^n n!}$, on a

$$|u_n| = \left| \frac{(-1)^n n^n}{\sqrt{n^3} e^n n!} \right| = \frac{n^n}{\sqrt{n^3} e^n n!},$$

utilise la formule de Stirling qui donne un équivalence de n! au voisinage de $+\infty$:

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n},$$

on peut déduire alors que

$$|u_n| \sim \frac{n^n}{\sqrt{n^3}e^n\left(\frac{n}{a}\right)^n\sqrt{2\pi n}} = \frac{1}{\sqrt{2\pi}}\frac{1}{n^2},$$

La Série $\sum_{n\geq 1} \frac{1}{n^2}$ est une série de Riemann convergente ,donc $\sum_{n\geq 1} \frac{1}{\sqrt{2\pi}} \frac{1}{n^2}$ converge, et donc $\sum_{n\geq 1} |u_n|$ converge, alors $\sum_{n\geq 1} u_n$ est absolument convergente, et finalement $\sum_{n\geq 1} u_n$ est une série converge.

Exemple 9. Soit la série à terme positive $\sum_{n\geq 1} 2-2\cos\left(\frac{1}{n}\right)$ on utilise le développement limité de cos au

voisinage de zéro à savoir

$$\cos(x) \underset{\mathcal{V}(0)}{\sim} 1 - \frac{x^2}{2}$$

on en déduit que

$$2 - 2\cos\left(\frac{1}{n}\right) \sim \frac{1}{n^2}$$

or la série du terme générale $1/n^2$ est une série de Riemann convergente, donc on utilise le critère de comparaison on en déduit que la série $\sum_{n>1} 2 - 2\cos\left(\frac{1}{n}\right)$ est une série convergente.

Proposition 12 (Critère de Riemann). Soit $\sum u_n$ une série à terme positive tel que

$$\lim_{n\to\infty} n^{\alpha} u_n = l.$$

- 1. Si l existe fini non nul alors:
 - a. $Si \alpha > 1$ alors $\sum u_n$ converge.
 - b. Si $\alpha \leq 1$ alors $\sum u_n$ diverge.
- 2. Si l = 0 et $\alpha > 1$ alors $\sum u_n$ converge.
- 3. Si $l = +\infty$ et $\alpha \le 1$ alors $\sum u_n$ diverge.

Preuve.

1. On suppose que

$$\lim_{n\to\infty} n^{\alpha} u_n = l,$$

avec l existe fini non nul, alors

$$\lim_{n \to \infty} \frac{u_n}{1/n^{\alpha}} = 1 \iff u_n \sim \frac{l}{n^{\alpha}}$$

or $\sum \frac{l}{n^{\alpha}}$ est une serie de Riemann converge si et seulement si $\alpha > 1$, on applique le critère de comparaison on en déduit que $\sum u_n$ converge si et seulement si $\alpha > 1$.

2. On suppose que que $\alpha > 1$

$$\lim_{n\to\infty} n^{\alpha} u_n = 0,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad n^{\alpha} u_n \le C,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad u_n \le \frac{C}{n^{\alpha}},$$

la série $\sum \frac{C}{n^{\alpha}}$ est une série de Riemann convergente on applique le critère de comparaison on en déduit que $\sum u_n$ converge.

3. On suppose que que $\alpha \leq 1$

$$\lim_{n\to\infty}n^{\alpha}u_n=+\infty,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad n^{\alpha} u_n \ge C,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad u_n \ge \frac{C}{n^{\alpha}},$$

la série $\sum \frac{C}{n^{\alpha}}$ est une série de Riemann divergente on applique le critère de comparaison on en déduit que $\sum u_n$ diverge.

Exemple 10.

Proposition 13 (Critère de comparaison indirecte). Soit $\sum u_n$ et $\sum v_n$ deux série à terme positive tel que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N: \quad \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}.$$

Alors

- 1. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.
- 2. Si $\sum v_n$ converge alors $\sum u_n$ converge.

Preuve. On suppose que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}.$$

donc

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad \frac{u_{n+1}}{v_{n+1}} \leq \frac{u_n}{v_n}.$$

donc la suite u_n/v_n est décroissante ce qui donne que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N: \quad \frac{u_{n+1}}{v_{n+1}} \leq \frac{u_N}{v_N} = C.$$

alors

$$\exists N \in \mathbb{N}; \quad \forall n \geq N: \quad u_n \leq C v_n$$

on applique le critère de comparaison alors

- 1. Si $\sum v_n$ converge la série $\sum u_n$ converge.
- 2. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.

Théorème 3 (d'Alembert). Soit $\sum u_n$ une série à terme positive tel que

1. Si il existe $\alpha \in [0, 1]$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad \frac{u_{n+1}}{u_n} \leq \alpha,$$

alors $\sum u_n$ converge.

2. Si il existe $\alpha > 1$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad \frac{u_{n+1}}{u_n} \geq \alpha,$$

alors $\sum u_n$ diverge.

Preuve.

1. Si il existe $\alpha \in [0, 1]$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n \geq n : \quad \frac{u_{n+1}}{u_n} \leq \alpha,$$

cela donne que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad u_{n+1} \leq \alpha u_n$$

et donc

$$\exists N \in \mathbb{N}; \quad \forall n \geq N: \quad u_n \leq (\alpha^{N-1}u_N)\alpha^n$$

or $\sum \alpha^n$ est une série géométrique convergente on applique le critère de comparaison on en déduit que alors $\sum u_n$ converge.

3.3 Séries A Terme Positif

9

2. Si il existe $\alpha > 1$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n \ge n : \quad \frac{u_{n+1}}{u_n} \ge \alpha,$$

cela donne que

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad u_{n+1} \geq \alpha u_n$$

et donc

$$\exists N \in \mathbb{N}; \quad \forall n \geq N : \quad u_n \geq (\alpha^{N-1}u_N)\alpha^n$$

or $\sum \alpha^n$ est une série géométrique divergente on applique le critère de comparaison on en déduit que alors $\sum u_n$ diverge.

Proposition 14 (Critère d'Alembert). Soit $\sum u_n$ une série à terme positive tel que

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l.$$

- 1. Si l < 1 alors $\sum u_n$ converge.
- 2. Si l > 1 alors $\sum u_n$ diverge.
- 3. Si l = 1 on a un doute sur la nature de $\sum u_n$.

Preuve. On suppose que

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$$

donc

$$\forall \varepsilon > 0; \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n \ge N(\varepsilon) \Longrightarrow \left| \frac{u_{n+1}}{u_n} - l \right| \le \varepsilon$$

ce qui donne

$$\forall n \geq N(\varepsilon) \Longrightarrow (l-\varepsilon)u_n \leq u_{n+1} \leq (l+\varepsilon)u_n$$

alors

$$\forall n \geq N(\varepsilon) \Longrightarrow (l-\varepsilon)^n \left[(l-\varepsilon)^{N(\varepsilon)-1} u_{N(\varepsilon)} \right] \leq u_n \leq (l+\varepsilon)^n \left[(l+\varepsilon)^{N(\varepsilon)-1} u_{N(\varepsilon)} \right],$$

- 1. Si l < 1 alors on peut choisir ε tel que $l + \varepsilon < 1$, or la série $\sum (l + \varepsilon)^n$ est une série géométrique convergente on applique le critère de comparaison alors on en déduit que la série $\sum u_n$ converge.
- 2. Si l > 1 alors on peut choisir ε tel que $l \varepsilon > 11$, or la série $\sum (l \varepsilon)^n$ est une série géométrique divergente on applique le critère de comparaison alors on en déduit que la série $\sum u_n$ diverge.
- 3. Si l=1 on a un doute sur la nature de $\sum u_n$. Un exemple La série de Riemann $\sum u_n$ avec $u_n=\frac{1}{n^{\alpha}}$ vérifier

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1,$$

portant elle diverge pour $\alpha \le 1$ et elle converge pour $\alpha > 1$.

Exemple 11. Soit la série $\sum_{n\geq 2} \frac{n^2+2n+3}{n!} e^n$ on pose $u_n = \frac{n^2+2n+3}{n!} e^n$ donc

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^2 + 2(n+1) + 3}{(n+1)!} e^{n+1} \frac{n!}{(n^2 + 2n + 3)e^n} = 0 < 1,$$

donc la série converge.

Proposition 15 (Bertrand). On appelle série de Bertrand la série de la forme

$$\sum \frac{1}{n^{\alpha} \left(\operatorname{Ln}(n) \right)^{\beta}}.$$

Elle converge si et seulement si $\alpha > 1$ ou $\alpha = 1$ et $\beta > 1$.

Preuve. Le terme générale

$$u_n = \frac{1}{n^{\alpha} (\text{Ln}(n))^{\beta}} = \frac{1}{n^{(\alpha+1)/2}} \frac{n^{(-\alpha+1)/2}}{(\text{Ln}(n))^{\beta}}$$

1. Si $\alpha > 1$ alors

$$\lim_{n \to +\infty} \frac{n^{(-\alpha+1)/2}}{(\operatorname{Ln}(n))^{\beta}} = 0$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad \frac{n^{(-\alpha+1)/2}}{(\operatorname{Ln}(n))^{\beta}} \le C,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad u_n \le C \frac{1}{n^{(\alpha+1)/2}},$$

vu que $\alpha > 1$ donc la série de Riemann $\sum \frac{1}{n^{(\alpha+1)/2}}$ converge, on applique le critère de comparaison on en déduit que $\sum u_n$ converge pour tout $\beta \in \mathbb{R}$.

2. Si α < 1 alors

$$\lim_{n \to +\infty} \frac{n^{(-\alpha+1)/2}}{(\operatorname{Ln}(n))^{\beta}} = +\infty$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad \frac{n^{(-\alpha+1)/2}}{(\operatorname{Ln}(n))^{\beta}} \le C,$$

donc

$$\exists C \in \mathbb{R}_+^*; \quad \exists N \in \mathbb{N}; \quad \forall n \ge N : \quad u_n \ge C \frac{1}{n^{(\alpha+1)/2}},$$

vu que $\alpha < 1$ donc la série de Riemann $\sum \frac{1}{n^{(\alpha+1)/2}}$ diverge, on applique le critère de comparaison on en déduit que $\sum u_n$ diverge pour tout $\beta \in \mathbb{R}$.

3. Si $\alpha = 1$ on a

$$\int_{2}^{+\infty} \frac{1}{x \left(\operatorname{Ln}(x) \right)^{\beta}} dx = \lim_{A \to +\infty} \int_{2}^{A} \frac{1}{x \left(\operatorname{Ln}(x) \right)^{\beta}} dx = \lim_{A \to +\infty} \int_{2}^{A} \left(\operatorname{Ln}(x) \right)' \left(\operatorname{Ln}(x) \right)^{-\beta} dx$$

$$= \begin{cases} \lim_{A \to +\infty} \frac{\left(\operatorname{Ln}(x) \right)^{1-\beta}}{1-\beta} \Big|_{2}^{A} & \text{Si } \beta \neq 1 \\ \lim_{A \to +\infty} \operatorname{Ln}(\operatorname{Ln}(x)) \Big|_{2}^{A} & \text{Si } \beta = 1 \end{cases}$$

$$= \begin{cases} \lim_{A \to +\infty} \frac{\left(\operatorname{Ln}(A) \right)^{1-\beta}}{1-\beta} - \frac{\left(\operatorname{Ln}(2) \right)^{1-\beta}}{1-\beta} & \text{Si } \beta \neq 1 \\ \lim_{A \to +\infty} \operatorname{Ln}(\operatorname{Ln}(A)) - \operatorname{Ln}(\operatorname{Ln}(2)) & \text{Si } \beta = 1 \end{cases}$$

$$= \begin{cases} -\frac{\left(\operatorname{Ln}(2) \right)^{1-\beta}}{1-\beta} & \text{Si } \beta > 1 \\ +\infty & \text{Si } \beta < 1 \\ +\infty & \text{Si } \beta = 1 \end{cases}$$

3.3 Séries A Terme Positif

11

alors pour $\alpha = 1$ la série converge si et seulement si $\beta > 1$.

Exemple 12. Soit la série $\sum u_n$ avec

$$u_n = \frac{1}{\sum_{k=1}^n k \left(n^2 \operatorname{Ln}(n) \right)^k},$$

alors

$$u_n \leq \frac{1}{n^2 \operatorname{Ln}(n)}$$

or $\sum \frac{1}{n^2 \operatorname{Ln}(n)}$ est une série de Bertrand convergente ($\alpha = 2 > 1$) donc on applique le critère de comparaison la série $\sum u_n$ est une série convergente.

Proposition 16 (Critère de Guass). Soit $\sum u_n$ une série à terme positive tel que

$$\frac{u_n}{u_{n+1}} = \lambda + \frac{\mu}{n} + o\left(\frac{1}{n^2}\right).$$

- 1. Si $\lambda > 1$ alors $\sum u_n$ converge.
- 2. Si $\lambda < 1$ alors $\sum u_n$ diverge.
- 3. Si $\lambda = 1$ et $\mu < 1$ alors $\sum u_n$ diverge.
- 4. Si $\lambda = 1$ et $\mu > 1$ alors $\sum u_n$ converge.

Proposition 17 (Raabe-Duhamel). Soit $\sum u_n$ une série à terme positive tel que

$$\lim_{n \to +\infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = \alpha$$

- 1. $Si \alpha > 1$ alors $\sum u_n$ converge.
- 2. Si $\alpha < 1$ alors $\sum u_n$ diverge.
- 3. Si $\alpha=1$ alors on a un doute sur la nature de la série $\sum u_n$.

Théorème 4 (Racine n^{eme} de Cauchy). *Soit* $\sum u_n$ une série à terme positive

1. Si il existe $\alpha \in [0, 1[$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n \geq n : \quad \sqrt[n]{u_n} \leq \alpha,$$

alors $\sum u_n$ converge.

2. Si il existe $\alpha > 1$ tel que

$$\exists N \in \mathbb{N}; \quad \forall n > n : \quad \sqrt[n]{u_n} > \alpha$$

alors $\sum u_n$ diverge.

Proposition 18 (Racine n^{eme} de Cauchy). Soit $\sum u_n$ une série à terme positive tel que

$$\lim_{n\to\infty} \sqrt[n]{u_n} = l.$$

1. Si l < 1 alors $\sum u_n$ converge.

2. Si
$$l > 1$$
 alors $\sum u_n$ diverge.

3. Si l = 1 on a un doute sur la nature de $\sum u_n$.

Exemple 13. Soit la série $\sum_{n>1} \left(\frac{n+1}{2n}\right)^n$, on pose $u_n = \left(\frac{n+1}{2n}\right)^n$ on a alors

$$\sqrt[n]{u_n} = \frac{n+1}{2n} \to \frac{1}{2} < 1,$$

donc la série $\sum_{n>1} u_n$ est une série convergente.

Proposition 19 (Critère logarithmique). Soit $\sum u_n$ une série à terme positive tel que

$$\lim_{n \to +\infty} \frac{\ln\left(\frac{1}{u_n}\right)}{\ln(n)} = l$$

alors

1. Si l < 1 la série $\sum u_n$ diverge.

2. Si l > 1 la série $\sum u_n$ converge.

3. Si l=1 on a un doute sur la nature de la série $\sum u_n$.

3.4 Séries A Terme Quelconque

Définition 9. On dit que $\sum u_n$ est une série à terme quelconque si le terme générale u_n change de signe au voisinage de $+\infty$.

Exemple 14. la série $\sum \frac{\sin(n)}{n}$ est une série à terme quelconque.

Théorème 5 (Critère D'Abel). Soit la série $\sum u_n$ tel que le terme générale u_n ce décompose sous la forme

$$u_n = v_n w_n$$

on pose

$$U_n = \sum_{k=0}^n u_k.$$

Alors si

- 1. La suite U_n est bornée
- 2. La suite v_n à variation bornée autrement dit

$$\exists M \in \mathbb{R}_+^* : \quad \sum_{n \ge 0} |v_{n+1} - v_n| \le M$$

3. La suite v_n tend ver zéro quand n tend ver l'infinie.

Alors la série $\sum u_n$ est une série convergente.

Théorème 6 (Critère Dirichlet-Abel). Soit la série $\sum u_n$ tel que le terme générale u_n ce décompose sous la forme

$$u_n = v_n w_n$$

on pose

$$U_n = \sum_{k=0}^n u_k.$$

Alors si

- 1. La suite U_n est bornée
- 2. La suite v_n est croissante ou décroissante
- 3. La suite v_n tend ver zéro quand n tend ver l'infinie.

Alors la série $\sum u_n$ est une série convergente.

Théorème 7 (Critère de Liebniz). Les deux série

$$\begin{split} & \sum_{n \geq 1} \frac{\sin(\theta n)}{n^{\alpha}}, \\ & \sum_{n \geq 1} \frac{\cos(\beta n)}{n^{\alpha}}, \quad \beta \neq 2k\pi, \quad k \in \mathbb{Z}, \end{split}$$

converge si et seulement si $\alpha > 0$.

Définition 10 (Séries Alternées). On appelle une série alterné une série de la forme $\sum (-1)^n v_n$ avec $v_n \ge 0$.

Théorème 8 (Liebniz). Soit v_n une suite décroissante au voisinage de l'infinie avec $\lim_{n\to+\infty}v_n=0$ alors la série

$$\sum (-1)^n v_n$$

converge et de plus

$$|S_n - S| = \left| \sum_{k=n+1}^{+\infty} (-1)^k v_k \right| \le V_{n+1}.$$

3.4.1 Utilisation du développement asymptotique :

On utilisée pour les séries à termes quelconques pour lesquelles les critères précédents ne s'appliquent pas. Dans de nombreuses situations, on conclut sur la nature d'une série en se ramenant à une série plus simple.

En utilisant le développement asymptotique; il faut développer à un ordre suffisamment élevé pour obtenir un reste absolument convergent.

Exemple 15. La série $\sum \frac{(-1)^n}{n+(-1)^n}$ avec le terme générale

$$u_n = \frac{(-1)^n}{n} \frac{1}{1 + \frac{(-1)^n}{n}}$$

vu que $(-1)^n/n \to 0$ on fait le développement limité de 1/(1+u) au voisinage de zéro ce qui donne

$$\frac{1}{1+u} = 1 - u + u^2 + o(u^2),$$

donc

$$u_n = \frac{(-1)^n}{n} \left[1 - \frac{(-1)^n}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \right]$$

ce qui peut être mise sous la forme

$$u_n = \frac{(-1)^n}{n} - \frac{1}{n^2} + \frac{(-1)^n}{n^3} + o\left(\frac{1}{n^3}\right)$$

la série $\sum (-1)^n/n$ est une série alternée convergente, $\sum 1/n^2$ est une série de Riemann convergente et $\sum (-1)^n/n^3$ est une série absolument convergente donc $\sum u_n$ converge.