ECOLE SUPERIEURE EN SCIENCES APPLIQUEES DE TLEMCEN ANALYSE NUMERIQUE II

EQUATIONS DIFFERENTIELLES : METHODES NUMERIQUES COVID19/2020-2021

M. BELMEKKI

1. Introduction

On s'intéresse en ce qui suit à la résolution par des méthodes numériques du problème de Cauchy :

$$\frac{dy}{dx} = f(x,y), x \in [a,b]$$

$$y(a) = y_0$$

 (a, y_0) étant la condition initiale, la valeur y_0 est une donnée du problème. On subdivise l'intervalle [a, b] en n parties égales à l'aide des points

$$x_0 = a, x_1, x_2, ..., x_{n-1}, x_n = b$$

en utilisant un pas constant

$$MOHAMh = \frac{x_n - x_0}{n}$$
. ELMEKKI

Trois méthodes seront mis en exergue : La méthode d'Euler, la méthode de Taylor et les méthodes de Ruge-Kutta.

ILEMUEN- ALGERIA

2. Méthode d'Euler

Introduisons les notations suivantes :

$$\Delta x = x_1 - x_0 = \dots = x_n - x_{n-1} = h$$
, h constante

$$\Delta y_0 = y_1 - y_0, \ \Delta y_1 = y_2 - y_1, ..., \ \Delta y_{n-1} = y_n - y_{n-1}$$

En chaccun des points $x_0, x_1, ..., x_n$, on remplace la dérivée $\frac{dy}{dx}$ par le rapport des différences finies $\frac{\Delta y}{\Delta x}$, on obtient alors l'équation approchée suivante :

$$\frac{\Delta y}{\Delta x} = f(x, y)$$

au point x_0 on obtient :

$$\frac{\Delta y_0}{\Delta x} = f\left(x_0, y_0\right)$$

d'où

$$\Delta y_0 = f(x_0, y_0) \Delta x$$

par suite

$$y_1 = y_0 + hf(x_0, y_0)$$

au point x_1 on obtient :

$$\frac{\Delta y_1}{\Delta x} = f\left(x_1, y_1\right)$$

donc

$$y_2 = y_1 + hf(x_1, y_1)$$

et de proche en proche on construit la suite $(y_k)_k$ par :

$$y_{k+1} = y_k + hf(x_k, y_k), \ 0 \le k \le n-1$$
 (1)

qu'on appellera formule d'Euler.

Exemple 1. Trouver la valeur approchée en x = 1 de la solution du problème

$$\frac{dy}{dx} = -y + x + 1, \ y(0) = 1$$

Réponse.

La solution exacte du problème est :

$$y(x) = e^{-x} + x$$

La valeur exacte au point x = 1 est $y(1) = e^{-1} + 1 = 1.367879$.

Pour la résolution numérique, choisissons un pas h = 0.1.

Dans notre cas : $a = x_0 = 0$, $y(0) = y_0 = 1$ et y(1) correspond alors à y_{10} .

La formule d'Euler s'écrit :

$$y_{k+1} = y_k + 0.1 (-y_k + x_k + 1)$$

= 0.9 $y_k + 0.1 x_k + 0.1$

En remplaçant dans l'équation précédente, on obtient les différentes valeurs de y_k

$$y_1 = 0.9(1) + 0.1(0) + 0.1 = 1$$

 $y_2 = 0.9(1) + 0.1(0.1) + 0.1 = 1.01$
 $y_3 = 0.9(1.01) + 0.1(0.2) + 0.1 = 1.029$

et ainsi de suite.

En tout point x_k on peut évaluer l'erreur absolue commise entre la valeur exacte $y(x_k)$ et la valeur approchée y_k .

On formule les résultats obtenus dans le tableau suivant :

x_k	$y(x_k)$	y_k	$ y(x_k)-y_k $
0.0	1.000000	1.000000	0.000000
0.1	1.004837	1.000000	0.004837
0.2	1.018731	1.010000	0.008731
0.3	1.040818	1.029000	0.011818
0.4	1.070320	1.056100	0.014220
0.5	1.106531	1.090490	0.016041
0.6	1.148812	1.131441	0.017371
0.7	1.196585	1.178297	0.018288
0.8	1.249329	1.230467	0.018862
0.9	1.306570	1.287420	0.019150
1.0	1.367879	1.348678	0.019201

On remarque qu'à chaque étape, l'erreur absolue augmente sensiblement.

3. MÉTHODE DE TAYLOR

Une première façon d'améliorer la méthode d'Euler est d'utiliser un développement de taylor à l'ordre 2 :

$$y(x_{k+1}) = y(x_k) + (x_{k+1} - x_k)y'(x_k) + \frac{1}{2}(x_{k+1} - x_k)^2 y''(x_k) + \frac{1}{6}(x_{k+1} - x_k)^3 y'''(\xi_k)$$

$$x_k \le \xi_k \le x_{k+1}$$

si $h = x_{k+1} - x_k$ est assez petit on a l'égalité approchée :

$$y(x_{k+1}) = y(x_k) + hy'(x_k) + \frac{1}{2}h^2y''(x_k)$$

or

$$y'(x) = f(x, y(x))$$

en dérivant on obtient :

$$y''(x) = \frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x)) f(x, y(x))$$

d'ou la procédure de Taylor :

$$y_{k+1} = y_k + hf(x_k, y_k) + \frac{h^2}{2} \left[\frac{\partial f}{\partial x}(x_k, y_k) + \frac{\partial f}{\partial y}(x_k, y_k) f(x_k, y_k) \right]$$
(2)

Exemple 2. Trouver la valeur approchée en x = 1 de la solution du problème

$$\frac{dy}{dx} = -y + x + 1, \ y(0) = 1$$

Réponse.

La solution exacte du problème est :

$$y(x) = e^{-x} + x$$

La valeur exacte au point x = 1 est $y(1) = e^{-1} + 1 = 1.367879$.

Pour la résolution numérique, choisissons un pas h = 0.1.

Dans notre cas : $a = x_0 = 0$, $y(0) = y_0 = 1$ et y(1) correspond alors à y_{10} .

La formule de Taylor s'écrit :

$$y_{k+1} = y_k + hf(x_k, y_k) + \frac{h^2}{2} \left[\frac{\partial f}{\partial x}(x_k, y_k) + \frac{\partial f}{\partial y}(x_k, y_k) f(x_k, y_k) \right]$$

On a

$$\frac{\partial f}{\partial y} = -1, \quad \frac{\partial f}{\partial x} = 1$$

d'où

$$y_{k+1} = y_k + h\left(-y_k + x_k + 1\right) + \frac{h^2}{2}\left(1 - \left(-y_k + x_k + 1\right)\right)$$
$$= y_k + h\left[\left(\frac{h}{2} - 1\right)y_k + \left(1 - \frac{h}{2}\right)x_k + 1\right]$$

On formule les résultats obtenus dans le tableau suivant :

x_k	$y(x_k)$	y_k	$ y(x_k)-y_k $
0.0	1.000000	1.000000	0.000000
0.1	1.004837	1.005000	0.000163
0.2	1.018731	1.019025	0.000294
0.3	1.040818	1.041218	0.000400
0.4	1.070320	1.070802	0.000482
0.5	1.106531	1.107075	0.000544
0.6	1.148812	1.149404	0.000592
0.7	1.196585	1.197210	0.000625
0.8	1.249329	1.249975	0.000646
0.9	1.306570	1.307228	0.000658
1.0	1.367879	1.368541	0.000662

On remarque qu'à chaque étape, l'erreur absolue augmente sensiblement.

On remarque aussi, que pour le même pas h la méthode de Taylor est nettement plus précise que celle d'Euler.

4. MÉTHODES DE RUNGE-KUTTA