
© Semestre 1

Cours 4 : Algorithmique et programmation

1

Chapter 3 :

programming algorithm

Semestre 1

2

Table of contents

Intoduction

General information about programs and software

Algorithm Definition & Meaning

Variables in an algorithm

Expressions and operators in an algorithm

Basic Instructions

Building an Algorithm

Conditional statements/control structures

Iteration statements/Loop structures

Activity 3

Ecole Supérieure des Sciences Appliquées - Tlemcen

© Semestre 1

3

• Computer system components

Operating Systems

(DOS, Windows, Linux,Unix, Macintosh, Android…)

programming languages

(pascal, Java,C/C++, python,….)

Hardware

(PC,serveur, phone,machines, etc.)

Applications

(Word, Excel, Jeux, Maple, google chrome, etc.)

© Semestre 1

Chapter 3 : programming algorithm

Introduction

4

 Process Management: The OS manages processes, which

are instances of executing programs. It allocates CPU time,

memory, and other resources to different processes.

 Memory Management: The OS controls the allocation and

deallocation of memory for various processes.

 File System Management: It provides a way to organize

and store files and data on storage devices.

 Device Management: The OS handles communication with

hardware devices.

 User Interface: Many operating systems provide user

interfaces, including command-line interfaces (CLI) and

graphical user interfaces (GUI).

© Semestre 1

Cours 4 : Algorithmique et programmation

General information about programs and software

Operating system OS

© Semestre 1

5

• They provide a way for humans to communicate with
computers and give them instructions to perform specific
tasks.

• There are many programming languages available, each
with its own syntax, semantics, and areas of application.

• the most commonly used programming languages:

 Python

 JavaScript:.

 Java:

 C++:

 C:

 C#:

Chapter 3 : programming algorithm

General information about programs and software (1)

programming language

© Semestre 1

6

Is a software tool used in computer programming to
transform source code written in a high-level programming
language into a lower-level code or binary code that can be
executed directly by a computer's central processing unit
(CPU).

Interpreter vs. Compiler:

Interpreters execute code line by line, translating and

executing each line as it is encountered, while compilers

translate the entire source code into machine code or an

intermediate representation before execution.

example.c
Compiler

Source file

example

Executable file

Execution

Chapter 3 : programming algorithm

General information about programs and software (2)

Compiler

© Semestre 1

Cours 4 : Algorithmique et programmation

7

Specification

Analysis

Language translation

Compilation

Test and evaluation

Problem statement

Technical specifications

Algorithm

Program source

Executable program

Final version and results

Programming involves the writing of algorithms

This explains why algorithms matter.

General information about programs and software (3)

Program

© Semestre 1

8

The term "algorithm" is the technique of performing arithmetic

with Arabic numerals developed by al-Khwārizmī.

An algorithm is a step-by-step procedure or a set of well-

defined rules for solving a specific problem or completing a

specific task.

Pseudo-code: To describe an algorithm, it's common to

use a mix of natural language and pseudo-code, which is a

high-level, human-readable representation of code that

describes the steps without adhering to a specific

programming language.

Chapter 3 : programming algorithm

Algorithm Definition & Meaning

© Semestre 1

9

Variables are an essential concept in programming and

algorithm design. They are used to store and manipulate data.

Data Storage: Variables are like containers that hold data. They

can store various types of data, such as numbers, text, or more

complex structures like arrays and objects.

Naming: Variables have names that programmers assign to them.

These names are used to refer to the data stored in the variable.

Data Types: Variables have data types that determine the kind of

data they can store. Common data types include integers,

floating-point numbers, strings, and boolean values.

Declaration: Before using a variable, it must be declared. This

informs the computer's memory system to allocate space for the

variable. The syntax for declaring a variable varies from one

programming language to another.

Chapter 3 : programming algorithm

Variables in an algorithm

© Semestre 1

Cours 4 : Algorithmique et programmation

10

Avoid Reserved Words: Don't use reserved words or keywords in the

programming language as variable names. For example, in C, you

can't use the name for it's a keyword used for loops.

Start with a Letter: Variable names should start with a letter (a-z, A-Z).

Alphanumeric and Underscores: Variable names can contain letters,

numbers, and underscores. Avoid special characters and spaces.

Descriptive Names: Variable names should be chosen to be

descriptive and indicative of the data they store. This makes the code

more readable and understandable. For example, instead of using a

generic name like a or x, use names like total_sum, user_avreag.

Variables in an algorithm (2)

Variables Name

© Semestre 1

11

In algorithms, variables can have different data types, which determine

the kind of data they can store and how that data is manipulated.

 Integer (int): Integer variables store whole numbers, both positive and

negative, without fractional parts.

 Floating-Point (float): Floating-point variables are used to store real

numbers with decimal points.

 Character(char): Character variables hold sequences of characters,

such as text or words.

 Boolean (bool): Boolean variables have only two possible values: True

and False.

 Array: Arrays are used to store collections of elements of the same data

type.

 Pointers : In low-level languages like C and C++, variables can also

store memory addresses (pointers or references) to other data in

memory.

Chapter 3 : programming algorithm

Variables in an algorithm (3)

Variables Type

© Semestre 1

12

 Input Variable or Data: refer to the values or information that a

program receive from external sources, such as a user, other

software/hardware components, or data files.

 Output Variable or Results: refer to the values, data, or information

that a program or function generates or produces as a result of its

execution.

 Intermediate Variable :Typically refers to a variable that is used to store

an intermediate result or temporary value during a computation or operation.

Chapter 3 : programming algorithm

Variables in an algorithm (4)

Variables designantion

© Semestre 1

13

In algorithms and programming, expressions and

operators are fundamental concepts used for performing

operations on data.

Expressions are combinations of values, variables, and

operators that can be evaluated to produce a result.

Operators are symbols or keywords that perform specific

operations on the operands.

Chapter 3 : programming algorithm

Expressions and operators in an algorithm

© Semestre 1

14

 Arithmetic Expressions: These expressions involve mathematical

operations, such as addition, subtraction, multiplication, and division.

result = 5 + 3

area = length * width

average = (x + y) / 2

 Relational Expressions: Relational expressions are used to compare

values and produce a Boolean result (True or False).

is_equal : x == 5

is_greater: a > b

 Logical Expressions: Logical expressions involve logical operators and are

used for making decisions or combining conditions.

is_valid = (age >= 18) and (age<30)

 Bitwise Expressions: In low-level programming or when dealing

with binary data, bitwise expressions can be used to manipulate

individual bits within values.

a=3&7

Chapter 3 : programming algorithm

Expressions and operators in an algorithm (1)

Expressions

© Semestre 1

15

 Arithmetic Operators:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulo, for finding the remainder)

 Assignment Operator:

= (assigns a value to a variable)

 Relational Operators (used in comparisons):

== (equal to)

!= (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

Chapter 3 : programming algorithm

Expressions and operators in an algorithm (2)

Operators

© Semestre 1

16

 Logical Operators (used in logical expressions):

&& (logical AND)

| |(logical OR)

!! (logical NOT)

 Bitwise Operators (used for binary manipulation):

& (bitwise AND)

| (bitwise OR)

^ (bitwise XOR)

! (bitwise NOT)

<< (left shift)

>> (right shift)

Increment and Decrement Operators:

++ (increment by 1)

-- (decrement by 1)

Chapter 3 : programming algorithm

Expressions and operators in an algorithm (3)

Operators

© Semestre 1

17

 assignment is a fundamental operation that involves storing a

value in a variable. It is used to initialize a variable, update its

value, or modify the content of a data structure. Assignment is

typically represented by the „=„ operator, which assigns a

value to a variable.

Example : i =1 j =i k =i+j

x =10,3 ch1 = "SMI"

ch2 = ch1 x =4 x =j

Updating Variables: Variables can be updated by assigning

new values to them. This is a common operation when variables

need to change over time. The assignment replaces the current

value with the new value.

Chapter 3 : programming algorithm

Basic instructions

Assignment

© Semestre 1

Cours 4 : Algorithmique et programmation

18

Rading input is a common operation that allows a program to

obtain data from an external source, typically a numerical date,

a user, a file, or another system. The specific way to read

input depends on the programming language and the

source of the input.

In algorithm.

read(X) , X is a input/data variable

Basic instructions (1)

Input Instructions (read())

© Semestre 1

Cours 4 : Algorithmique et programmation

19

Is instruction refer to operations that output or display

information, typically to the user via a screen, console, file, or

another output medium. Writing instructions allow a program to

communicate results, messages, and data to the user or store

information for future reference. The specific way to write

output depends on the programming language and the

output destination.

In algorithm.

write(Y) , Y is a output/result variable

write(“Hello all”), displaying a message

Basic instructions (2)

Output Instructions (write())

© Semestre 1

20

Algorithm : Calcul_double

Input variable, A : integer

Output variable, B : integer

BEGIN

read (A)

B = 2*A

write(B)

END.

Chapter 3 : programming algorithm

Basic instructions (3)

Example

© Semestre 1

21

Chapter 3 : programming algorithm

Building an Algorithm

It appears you're describing the general structure of an

algorithm as consisting of three main parts: the header,

declaration, and block of instructions.

Alogrithm Name

Define variables, Input, Output, and temporary

/intermediate variables

BEGIN

The instructions/Main body of the algorithm.

……………………….

The step-by-step sequence of operations or

actions to achieve the algorithm's goal.

……………………….

………………………..

END.

Header

Declaration

Instructions

© Semestre 1

22

Chapter 3 : programming algorithm

Building an Algorithm

My First Algorithm

Name: sum of two integer

Input Variables: A,B integer

Output Variable: C integer

intermediate variables:____________

BEGIN

A=23

B=10

C=A+B

Write (C)

END.

Name: sum of two integer

© Semestre 1

23

Chapter 3 : programming algorithm

Building an Algorithm

My First Algorithm

Name: sum of two integer (best solution)

Input Variables: A,B integer

Output Variable: C integer

intermediate variables:____________

BEGIN

read(A)

read(B)

C=A+B

Write (C)

END.

© Semestre 1

Cours 4 : Algorithmique et programmation

24

• Conditional instructions or control structures, are a fundamental

part of programming and algorithm design.

• They allow you to make decisions and execute different blocks of

code based on specified conditions.

• Conditional statements enable your program to take different

actions depending on whether a condition is true or false.

There are typically several types of conditional statements in

algorithms:

 if Statements

 If-else Statements

 else-if Statements

 Switch Statements

Conditional statements/control structures

© Semestre 1

Cours 4 : Algorithmique et programmation

25

An "if" statement is used to execute a block of code if a

condition is true.
Example:

Conditional statements/control structures

if statements

Name: Sum Positive number

Input Variables: A,B integer

Output Variable: C integer

BEGIN

read(A)

read(B)

if(A>0) begin_if

C=A+B

end_if

Write (C)

END.

© Semestre 1

Cours 4 : Algorithmique et programmation

26

An "if-else" statement allows to execute one block of code

if a condition is true and another block if the same condition

is false. Example:

Conditional statements/control structures

if-else statements

Name: Sum Positive number

Input Variables: A,B integer

Output Variable: C integer

BEGIN

read(A),read(B)

if(A>0) begin_if

C=A+B

end_if

else begin_else

C=A-B

end_else

Write (C)

END.

© Semestre 1

Cours 4 : Algorithmique et programmation

27

These are used when you have multiple conditions to check and

execute different code blocks based on which condition is true.Example:

Conditional statements/control structures

else-if statements

Name: Sum Positive number

Input Variables: A,B integer

Output Variable: C integer

BEGIN

read(A),read(B)

if(A>0) begin_if

C=A+B

end_if

else begin_else

if(A==0) begin_if

C=A*B

end_if

else begin_else

C=A-B

end_else

end_else

Write (C)

END.

© Semestre 1

Cours 4 : Algorithmique et programmation

28

hese are used to select one of many code blocks to execute, based on

the value of an expression.Example:

Conditional statements/control structures

Switch Statements

Name: Sum Positive number

Input Variables: A,B integer

Output Variable: C integer

BEGIN

read(A),read(B)

switch begin_switch

case (A>0): C=A+B

case (A<0): C=A-B

default: C=A*B

end_switch

Write (C)

END.

© Semestre 1

29

Write an algorithm that asks the user for an integer and tests

whether it's divisible by 3:

Chapter 3 : programming algorithm

Conditional statements/control structures

Algorithm example 1

Name: Divisible by 3

Input Variables: A integer

Output Variable: ___________

BEGIN

read(A)

if(A%3==0) begin_if

write("The entered integer is divisible by 3.“)

end_if

else begin_else

write(" The entered integer is not divisible by 3.“)

end_else

END.

© Semestre 1

30

Chapter 3 : programming algorithm

Conditional statements/control structures

Algorithm example 2

Name: Positive_negative_null

Input Variables: A integer

Output Variable: ___________

BEGIN

read(A)

if(A>0) begin_if

write("The entered integer is positive.“)

end_if

else begin_else

if(A<0) begin_if

write("The entered integer is negative.“)

end_if

else begin_else

write("The entered integer is zero.“)

end_else

end_else

END.

© Semestre 1

31

Chapter 3 : programming algorithm

Conditional statements/control structures

Algorithm example 3

Name: Calculator

Input Variables: A,B integer, op char

Output Variable: C

BEGIN

read(A), read(B), read(op)

switch begin_switch

case (op=„+‟): C=A+B

case (op=„-‟): C=A-B

case (op=„*‟): C=A*B

case (op=„/‟): if(B==0) begin_if

write(“error“)

end_if

else begin_else

C=A/B

end_else

default: write(“error“)

end_switch

Write (C)

END.

© Semestre 1

32

Loops or iteration constructs, are fundamental components of

programming that allow you to repeat a block of code multiple

times. Iteration is essential for automating repetitive tasks,

processing collections of data, and implementing algorithms that

involve repeating actions.

 For Loop

 While Loop

 Repeat Loop

Chapter 3 : programming algorithm

Iteration statement/Loop structures

© Semestre 1

33

A for loop is a fundamental control structure in programming

that allows you to execute a block of code a specific number of

times. It is commonly used when you know in advance how many

times you want to repeat a certain operation.

for (initialization/start; stop; iteration/step)

Example:

intermediate variables:i integer

BEGIN

For (i=0 to 10 with step 1)

begin_for

instructions

end_for

END.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(1)

For Loop

© Semestre 1

34

 Calculating x to the n power, where x is a real number and n is a

positive integer.

Name: Calculate power

Input Variables: x,n integer

Output Variable: P integer

intermediate variables: i integer

BEGIN

write(" Enter the value of x ");

write(x);

écrire (" Enter the value of n ");

read(n);

P=1;

For (i=1 to n with step 1) begin_for

P= P* x ;

end_for

write(P);

END.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(2)

For Loop

© Semestre 1

35

while loop is a control structure in programming that allows you

to repeatedly execute a block of code as long as a specified

condition remains true. It continues iterating as long as the

condition is true.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(3)

While Loop

while(condition) begin_while

Instructions

end_while
Example:

intermediate variables:i integer

BEGIN

i=0

while(i<=10) begin_while

instructions

i=i+1

end_while

END.

© Semestre 1

36

 Calculating x to the n power, where x is a real number and n is a

positive integer.

Name: Calculate power

Input Variables: x,n integer

Output Variable: P integer

intermediate variables: i integer

BEGIN

write(" Enter the value of x ");

write(x);

écrire (" Enter the value of n ");

read(n);

P=1; i=1

while(i<10) begin_while

P= P* x ;

end_while

write(P);

END.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(4)

While Loop

© Semestre 1

37

That is similar to a "while" loop, but it guarantees that the

code block will be executed at least once, even if the

condition is initially false.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(3)

Repeat Loop

Repeat begin_repeat

Instructions

while(condition) end_repeat

Example:

intermediate variables:i integer

BEGIN

i=0

Repeat begin_repeat

instructions

i=i+1

while(i<=10) end_repeat

END.

© Semestre 1

38

 Calculating x to the n power, where x is a real number and n is a

positive integer.

Name: Calculate power

Input Variables: x,n integer

Output Variable: P integer

intermediate variables: i integer

BEGIN

write(" Enter the value of x ");

write(x);

écrire (" Enter the value of n ");

read(n);

P=1; i=1

Repeat begin_repeat

P= P* x ;

while(i<10) end_repeat

write(P);

END.

Chapter 3 : programming algorithm

Iteration statement/Loop structures(5)

Repeat Loop

Activity chapter 3

Write an algorithm that prompts the user to enter any time in the form of three variables:

Hour, Minute, and Second, and then displays a message indicating whether the time entered is

valid or not. (assuming all three variables are non-negative).

Examples :

Hour =28 Minute = 31 Second =51 is an invalid time.

Hour = 16 Minute= 3 Second = 55 is a valid time.

Algorithm

Name: validated time

Input variables: m, h, s : Integer

Output variables:

Intermediate variables :

BEGIN

 read(h) ;
 read(m) ;
 read(s) ;
if(h<24) begin-if
 if(m<60) begin-if
 if(s<60) begin-if
 Ecrire ("is a valid time ")
 end_si
 else begin_else
 Ecrire("is a valid time ")
 end_else
 end_if
 else begin-if
 Ecrire("is a valid time ")
 end-if
end-if
else begin-if
 Ecrire("is an invalid time") ;
end-if

END.

	Chapitre 3-Informatique 1 programming algorithm.pdf (p.1-38)
	Activity Chapter 3.pdf (p.39)

