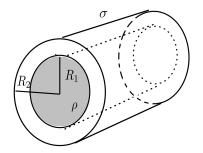

# Electro-Magneto Static

Tutorials

Tutorial 2 : Electrostatics 2

### Exercise 1.


Let there be two charge distributions ( $\rho > 0$  and  $\sigma > 0$ ) such that The first charge distribution  $\rho$  is located in the region bounded by O and  $R_1$  and the second distribution is located on surface with radius  $R_2$ .



- 1. Find the expression for the electric field at any point in space.
- 2. Determine the resulting potential, if the potential is  $V_0$  as r approaches  $\infty$ .

#### Exercise 2.

A cylinder is uniformly charged by two charge distributions ( $\rho > 0$  and  $\sigma < 0$ ).  $\rho$  is given between O and  $R_1$  and  $\sigma$  on  $R_2$ .



- 1. Find the expression for the electric field at any point in space.
- 2. Find its potential, when it is given V = 0 when r = 0.

#### Exercise 3.

- I. A metallic sphere with a radius of 0.45 m carries a charge of Q = 0.25 nC. Find the value of the electric field ;
  - \* at 0.1 m from the surface of the sphere,
  - \*\* and at 0.35 m from the center of the sphere.
- II. How many electrons must be added to an isolated spherical conductor with a diameter of  $32 \ cm$  to produce an electric field equivalent to  $1150 \ N/C$  on the surface of the conductor?

### Exercise 4.

- I. Consider a solid cylinder  $(Cy_1)$  with a volume charge distribution  $(\rho < 0)$ . The radius of the cylinder is  $R_1 = 1 \ cm$  and its length is  $L = 15 \ cm$ .
  - a. Find the expression for the electric field at any point in space.
  - b. Calculate the electric charge contained in this cylinder if  $\rho = -0, 106 C/m^3$ .
- II. We now envelop the cylinder  $(Cy_1)$  with a hollow metallic cylinder  $(Cy_2)$  with inner radius
  - $R_2 = 1, 2 \ cm$  and outer radius  $R_3 = 1, 5 \ cm$ , the length of the cylinder is  $L = 15 \ cm$ .
  - a. Quantify the new charge distribution of the system.
  - b. Give the expression for the electric field at any point in space.
  - c. Calculate the electric potential in all regions of the system if the potential is zero at r = 0.
  - d. What will be the charge density on the outer surface of the cylinder  $(Cy_2)$ ?

## Exercise 5.

Consider a cylindrical capacitor composed of two cylindrical conductors, where the inner cylinder has a radius of  $r_1 = 0.25 \ cm$ , and is covered by another cylinder with a radius of  $r_2$  to be determined. The capacitance of this capacitor is 36.7 pF and the length of the cylindrical capacitor is 12 cm.

## Exercise 6.

- I. Consider a solid metallic sphere  $(S_1)$  with a radius of  $R_1 = 3$  cm, with a uniform charge distribution.
  - 1. Give the expression for the electric field inside, outside, and on the surface of the sphere.
  - 2. Determine the electric potential inside and outside the sphere, if the potential at r = 0 is equal to  $\sigma R_1/\varepsilon_0$ .
- II. We now envelop the sphere  $(S_1)$ , which carries an initial charge equivalent to +5q, , with a hollow conductive sphere  $(S_2)$  with internal radius  $R_2$  and external radius  $R_3 = 5$  cm, carrying an initial electric charge of -5q.
  - 1. Find the new charge distribution of the two spheres.
  - 2. Will the expression for the electric field change in the regions  $0 < r < R_1$  and  $R_1 < r < R_2$ ? Justify.
  - 3. Calculate the internal radius  $R_2$  if the capacitance of this capacitor is  $C = 10 \ pF$ .
  - 4. Calculate the charge densities of the two spheres  $(S_1)$  and  $(S_2)$  if we are given  $q = 8 \ nC$  and  $\varepsilon_0 = 8,85 \ 10^{-12} \ C/(V.m)$ .