

Higher School in Applied Sciences Preparatory Department Course: Algebra 1 Academic Year: 2023/2024

Set of exercises 2

Exercise 1. Let \mathcal{G}_n the subset of \mathbb{N} defined as $\mathcal{G}_n = \{0, 1, 2, 3, \dots, n-1\}$ on which we define the law of composition:

 $\forall x, y \in \mathcal{G}_n, \ x \oplus y = s \quad \text{with } s: \text{ the rest of the euclidean division of } (x + y) \text{ by } n.$

- 1. Verify that (\mathcal{G}_n, \oplus) is an abelian group.
- 2. We choose n = 10
 - (a) Calculate $4 \oplus 8$; $3 \oplus (-7)$
 - (b) Resolve in \mathcal{Z}_{10} the equation: $x \oplus 3 = 1$

Exercise 2. Let (E, *) be a group. We define the center of E:

 $Z(E) = \{ x \in E : \forall y \in E, \ x * y = y * x \}$

- 1. Show that Z(E) is a subgroup of (E, *)
- 2. Is Z(E) abelian?

Exercise 3. Let $(\mathbb{R} \setminus \{-3\}, *)$ be a group with * defined as: a * b = ab + 3(a + b + 2)Let $f : (\mathbb{R} \setminus \{-3\}, *) \rightarrow (\mathbb{R}^*, .)$ $x \mapsto x + 3$

- 1. Show that f is a group homomorphism.
- 2. Calculate using two different ways the identity element e and the inverse x^{-1} .

Exercise 4. Let $f:(E,*) \to (F,\Delta)$ be a group homomorphism.

We define the kernel of f as:

 $ker(f) = \{x \in E : f(x) = e_2\}$ with e_2 is the identity element of (F, Δ) .

- 1. Prove that ker(f) is a subgroup of (E, *).
- 2. Show that: f injective $\Leftrightarrow ker(f) = \{e_1\}$ with e_1 is the identity element of (E, *).

Exercise 5. Let \mathcal{G}_n the subset of \mathbb{N} defined as $\mathcal{G}_n = \{0, 1, 2, 3, \dots, n-1\}$ on which we define two laws of composition:

 $\forall x, y \in \mathbb{Z}_n, x \oplus y = s$ with s: the rest of the euclidean division of (x + y) by n. $x \otimes y = p$ with p: the rest of the euclidean division of xy by n

- 1. Verify that $(\mathcal{G}_n, \oplus, \otimes)$ is a commutative ring.
- 2. We choose n = 10
- **3.** Calculate $2 \otimes 9$; $9^{-1} \oplus 5$; $3^{-1} \oplus 6$; 3^2 ; 7^2
- 4. Resolve in \mathcal{Z}_{10} the following equations:

 $(3 \otimes x) \oplus 5 = 0$ $x^2 \oplus 1 = 0$

Exercise 6. Let $(E, +, \times)$ be a ring.

We say that x is nilpotent if $\exists n \in \mathbb{N}^*$ such that $x^n = 0$. Prove the following statements:

- 1. $(x \text{ nilpotent}) \land (xy = yx) \Rightarrow xy \text{ nilpotent}$
- 2. $xy \text{ nilpotent} \Rightarrow yx \text{ nilpotent}$

Exercise 7. we define $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}/a, b \in \mathbb{Q}\}$

- 1. Show that $(\mathbb{Q}[\sqrt{2}], +, \times)$ is a subring of $(\mathbb{R}, +, \times)$.
- 2. Deduce that $(\mathbb{Q}[\sqrt{2}], +, \times)$ is a field.