

Higher School in Applied Sciences Preparatory Department Course: Algebra 1 Academic Year: 2023/2024

Set of exercises 1

Exercise 1. Using truth tables, prove that the following statements are logically equivalent

- $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R) \tag{1}$
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ ⁽²⁾
- $(P \lor Q) \Rightarrow R \equiv (P \Rightarrow R) \land (Q \Rightarrow R)$ (3)
 - (4)

Exercise 2. 1. Are the following statements true or false?

- (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$
- (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$
- (c) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$
- 2. Give their negation

Exercise 3. Prove by contraposition that

 $xy \text{ even} \Rightarrow x \text{ even or } y \text{ even}$

Exercise 4. Let $x \in \mathbb{R}$ such that $\forall \varepsilon > 0, x \le \varepsilon$ Prove by contradiction that $x \le 0$

Exercise 5. 1. Using mathematical induction prove that $5^n - 2^n$ is a multiple of 3.

- 2. is $x^n y^n$ a multiple of x y for all $x, y \in \mathbb{N}$ with x > y?
- 3. For which natural numbers n is $n! > 3^n$?

Exercise 6. Let $E = \{a, b\}$

- 1. Give the set $\mathbb{P}(E)$
- 2. The following items are elements of which set?

 $(a,b)\;,\;\{a\},(a,\{b\}),(\{a\},\{b\}),\{\{a\},\{b\}\},(a,E)$

Exercise 7. let *E* be a set and $A, B \in \mathbb{P}(E)$ Resolve in $\mathcal{P}(E)$ the following equations:

- 1. $X \cap A = B$
- **2.** $X \setminus A = B$

Exercise 8. Let E be a set and $A, B, C \in \mathcal{P}(E)$ We define the symmetric difference of A and B as:

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

1. Show that $A\Delta B = (A \setminus B) \cup (B \setminus A)$

- **2.** Calculate $A\Delta A$, $A\Delta \overline{A}$, $A\Delta E$, $A\Delta \emptyset$
- 3. Assuming that $A\Delta B = A\Delta C$, prove that B = C.

Exercise 9. The characteristic map is defined as

$$\varphi_A: E \to \{0,1\}$$
$$x \mapsto \varphi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

- **1.** Prove that $\varphi_A = \varphi_B \Leftrightarrow A = B$
- 2. Establish the following properties:
 - (a) $\varphi_{\overline{A}} = 1 \varphi_A$

(b)
$$\varphi_{A\cap B} = \varphi_A \varphi_B$$

- (c) $\varphi_{A\cup B} = \varphi_A + \varphi_B \varphi_A \varphi_B$
- 3. Deduce that $(A \cup B = A \cup C) \land (A \cap B = A \cap C) \Rightarrow (B = C)$

Exercise 10. 1. Knowing that $E = F = \mathbb{R}$, are the following injections? surjections?

$$f: \begin{array}{cccc} E & \to & F \\ x & \mapsto & \frac{x^2 + 1}{x^2 - 1} \end{array} \qquad g: \begin{array}{cccc} E & \to & F \\ x & \mapsto & \exp\left(x + 2\right) \end{array} \qquad h: \begin{array}{cccc} E & \to & F \\ x & \mapsto & \sqrt{1 - x^2} \end{array}$$

- 2. Find E and F such that f, g et h are bijections, and find their inverses.
- 3. Calculate $g([1,2]), g^{-1}(]1,3]$)

Exercise 11. Let $f : E \to F$ and $A, B \in P(E)$. Prove that:

- **1.** $f(A \cup B) = f(A) \cup f(B)$
- 2. f injective $\Rightarrow f(A \cap B) = f(A) \cap f(B)$

Exercise 12. Let *E* be a nonempty set and $A, B \in P(E)$. We define the mapping $f: f: P(E) \rightarrow P(A) \times P(B)$ $X \mapsto (X \cap A, X \cap B)$

- **1.** Prove that f injective $\Leftrightarrow A \cup B = E$
- 2. Show that f surjective $\Leftrightarrow A \cap B = \emptyset$
- 3. At what condition is f bijective? give its inverse f^{-1} .