Roots of a polynomial

Definition 42. Let $P \in \mathbb{K}[X]$ $\alpha \in \mathbb{K}$ is said to be a root of P if and only if $P(\alpha) = 0$

Proposition 4. $(X - \alpha)$ divisor of $P \Leftrightarrow P(\alpha) = 0$

Theorem 11. Let $P\in\mathbb{K}_n[X]$ with $P(X)=a_0+a_1X^1+\cdots+a_{n-1}X^{n-1}+a_nX^n$ and $\alpha=\frac{a}{b}\in\mathbb{Q}$ with $a\wedge b=1$

$$P(\alpha) = 0 \Rightarrow a|a_0 \text{ and } b|a_n$$

Proof. $P\left(\frac{a}{b}\right) = 0 \Rightarrow a_0 + a_1\left(\frac{a}{b}\right) + \dots + a_{n-1}\left(\frac{a}{b}\right)^{n-1} + a_n\left(\frac{a}{b}\right)^n = 0$

Multiplying both sides by b^n , we get:

$$a_0b^n + a_1ab^{n-1} + \dots + a_{n-1}a^{n-1}b + a_na^n = 0$$

 $\Rightarrow a_0b^n = -(a_1ab^{n-1} + \dots + a_{n-1}a^{n-1}b + a_na^n)$
 $= -a(a_1b^{n-1} + \dots + a_{n-1}a^{n-2}b + a_na^{n-1})$
 $a \text{ divides } a_0b^n \text{ and } a \land b = 1, \text{ thus } a \text{ divides } a_0.$

On the other hand,

$$a_n a^n = -(a_0 b^n + a_1 a b^{n-1} + \dots + a_{n-1} a^{n-1} b + a_n a^n) = -b(a_0 b^{n-1} + a_1 a b^{n-2} + \dots + a_{n-1} a^{n-1})$$
 b divides $a_n a^n$ and $a \wedge b = 1$, thus b divides a_n .

Example 34. $P(X) = X^4 + X^3 - X^2 + X - 2$

Let $\alpha=a/b$ be a potential root of P. Then,

$$a \text{ divides } a_0 \Rightarrow a \text{ divides } -2$$

$$b$$
 divides $a_4 \Rightarrow b$ divides 1

We choose
$$a=1$$
 and $b=1 \Rightarrow \alpha=1$

We choose a=-2 and $b=1\Rightarrow \alpha=-2$

$$P(1) = P(-2) = 0$$

$$Q(X) = 2X^3 - 3X^2 + 3X - 1$$

Let $\alpha = a/b$ be a potential root of P. Then,

$$a \text{ divides } a_0 \Rightarrow a \text{ divides } -1$$

$$b$$
 divides $a_3 \Rightarrow b$ divides 2

We choose a=1 and $b=2\Rightarrow \alpha=\frac{1}{2}$

$$P\left(\frac{1}{2}\right) = 0$$

Root multiplicity

Proposition 5. $(X - \alpha)^m$ is a divisor of $P \Leftrightarrow [P(\alpha) = P^{(1)}(\alpha) = P^{(2)}(\alpha) = \cdots = P^{(m-1)}(\alpha) = 0]$

Example 35.
$$P(X) = (X+1)^2(X-2) = X^3 - 3X - 2$$
 $P(-1) = 0$ $P^{(1)}(-1) = 3(-1)^2 - 3 = 0$ We conclude that $(X+1)^2$ divides P .

Definition 43. Let $P \in \mathbb{K}[X]$ $\alpha \in \mathbb{K}$ and $m \in \mathbb{N}^*$

If $(X-\alpha)^m$ divides P and $(X-\alpha)^{m+1}$ is not a divisor of P, we say that α is a root of multiplicity m and we denote $mult(\alpha)=m$

Theorem 12. $mult(\alpha)=m\Leftrightarrow P(\alpha)=P^{(1)}(\alpha)=P^{(2)}(\alpha)=\cdots=P^{(m-1)}(\alpha)=0$ and $P^{(m)}(\alpha)\neq 0$

Example 36.
$$P(X) = (X+1)^2(X-2) = X^3 - 3X - 2$$
 $mult(-1) = 2$ $mult(2) = 1$ $P(-1) = 0$ $P^{(1)}(-1) = 3(-1)^2 - 3 = 0$ $P^{(2)}(-1) = 6(-1) \neq 0$ We conclude that $\alpha = -1$ is a root of multiplicity 2

Theorem 13. All roots of Q (counted with their multiplicity) are also roots of $P \Leftrightarrow Q|P$

Example 37. Let
$$P(X) = X^{2n+1} + 1$$
 $Q(X) = X + 1$ $S(X) = (X+1)^2$ $Q(-1) = 0$ $P(-1) = 0 \Rightarrow Q|P$ $P'(X) = (2n+1)X^{2n} \Rightarrow P'(-1) = (2n+1)(-1)^{2n} = 2n+1 \neq 0 \Rightarrow S$ is not a divisor of P

Factorization for polynomials

Definition 44. A non-constant polynomial $P \in \mathbb{K}[X]$ is said to be irreducible if and only if it cannot be expressed as a product of two polynomials of lower degree.

remark

- 1. In $\mathbb{R}[X]$, irreducible polynomials are polynomials of degree 1 and polynomials of degree 2 with $\Delta < 0$.
- 2. In $\mathbb{C}[X]$, the only irreducible polynomials are polynomials of degree 1.

Example 38. $P(X) = X^2 + 1$ P is irreducible on $\mathbb{R}[X]$ and not in $\mathbb{C}[X]$

Theorem 14. Every polynomial P of $\mathbb{K}[X]$ is either irreducible or can be uniquely expressed as a product of irreducible polynomials of $\mathbb{K}[X]$. This process is called **factorization** of P

remark

$$P \in \mathbb{C}[X] \Rightarrow P(X) = \lambda (X - a_1)^{n_1} (X - a_2)^{n_2} \cdots (X - a_k)^{n_p}$$

$$P \in \mathbb{R}[X] \Rightarrow P(X) = \lambda (X - a_1)^{n_1} (X - a_2)^{n_2} \cdots (X - a_k)^{n_p} (X^2 + b_1 X + c_1)^{k_1}$$

$$(X^2 + b_2 X + c_2)^{k_2} \cdots (X^2 + b_q X + c_q)^{k_q} \text{ with } \Delta_i = b_i^2 - 4c_i < 0$$

Example 39.
$$P(X) = X^3 - X^2 + X - 1$$
 First, we factorize P on $\mathbb{R}[X]$.

$$P(1) = 0 \Rightarrow (X - 1) \text{ divides } P$$

$$P(X)=(X-1)(X^2+1)$$

Let us now factorize P on $\mathbb{C}[X]$, in fact we still have to factorize X^2+1 $X^2+1=0\Rightarrow X^2=-1\Rightarrow X=i$ ou $X=-i\Rightarrow X^2+1=(X+i)(X-i)$ $P(X)=(X-1)(X+i)(X-i)$

Example 40.
$$P(X) = X^4 + 1$$

First, we factorize P on $\mathbb{R}[X]$.

$$P(X) = X^4 + 1 = (X^4 + 2X^2 + 1) - 2X^2 = (X^2 + 1)^2 - 2X^2$$

$$P(X) = (X^2 + \sqrt{2}X + 1)(X^2 - \sqrt{2}X + 1)$$

Now, we factorize P on $\mathbb{C}[X]$.

$$\Delta_{1} = 2 - 4 = 2i^{2} \Rightarrow \alpha_{1} = \frac{-\sqrt{2} + \sqrt{2}i}{2} \qquad \alpha_{2} = \frac{-\sqrt{2} - \sqrt{2}i}{2}$$

$$\Delta_{2} = 2 - 4 = 2i^{2} \Rightarrow \alpha_{3} = \frac{\sqrt{2} + \sqrt{2}i}{2} \qquad \alpha_{4} = \frac{\sqrt{2} - \sqrt{2}i}{2}$$

$$P(X) = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)(X - \alpha_4)$$

$$P(X) = \left(X + \frac{\sqrt{2} - \sqrt{2}i}{2}\right) \left(X + \frac{\sqrt{2} + \sqrt{2}i}{2}\right) \left(X - \frac{\sqrt{2} + \sqrt{2}i}{2}\right) \left(X - \frac{\sqrt{2} - \sqrt{2}i}{2}\right)$$

Definition 45. A polynomial $P \in \mathbb{K}[X]$ is said to split over the field \mathbb{K} if:

$$P(X) = \alpha \prod (X - x_i), \text{ with } \alpha, x_i \in \mathbb{K}$$

Example 41. X^4+1 splits over $\mathbb C$ but does not split over $\mathbb R$.