Chapter 3

Polynomials

Definition 36. Let \mathbb{K} be field. We call a polynomial over \mathbb{K} with indeterminate X any expression of the form:

$$P(X) = \sum_{i=0}^{n} a_i X^i = a_0 X^0 + a_1 X^1 + \dots + a_n X^n \quad \text{where } a_i \in \mathbb{K} \text{ and } a_n \neq 0$$

Definition 37. 1. The elements a_0, a_1, \dots, a_n are called the coefficients of *P*.

- 2. The coefficient a_n is called the leading coefficient. A polynomial is called monic if the leading coefficient is 1.
- 3. *n* is called the degree of *P* and is denoted by n = degP.

if n=0, then $deg P=-\infty$

- 4. The set of all polynomials with coefficients in \mathbb{K} is denoted by $\mathbb{K}[X]$.
- 5. The set of all polynomials with coefficients in \mathbb{K} of degree less or equal to n is denoted by $\mathbb{K}_n[X]$.

Example 31. $deg(X^3 - 1) = 3$ deg(5) = 0 $deg(0) = -\infty$

Definition 38. Let $P \in \mathbb{K}[X]$.

$$P(X) = \sum_{i=0}^{n} a_i X^i = a_0 X^0 + a_1 X^1 + \dots + a_n X^n$$

The polynomial denoted by $P^{(1)}$ and defined as:

 $P^{(1)}(X) = \sum_{i=1}^{n} i a_i X^{i-1} = a_1 X^0 + 2a_2 X^1 + \dots + na_n X^{n-1}$ is called the derivative of *P*.

Proposition 1. Let $k \in \mathbb{N}^*$ $degP^{(k)} = degP - k$

Operations on polynomials

Addition

Definition 39. Let $P, Q \in \mathbb{K}[X]$ with: $P(X) = \sum_{i \ge 0} a_i X^i$ and $Q(X) = \sum_{i \ge 0} b_i X^i$

The sum of P and Q denoted P + Q is defined as:

$$(P+Q)(X) = \sum_{i \ge 0} c_i X^i \text{ with } c_i = a_i + b_i$$

Proposition 2.

1. $deg(P+Q) \leq Max(degP, degQ)$

2. $degP \neq degQ \Rightarrow deg(P+Q) = Max(degP, degQ)$

Example 32. $P(X) = -3X^2 + X + 1$ $Q(X) = 3X^2 - X + 3$ (P+Q)(X) = 4

Multiplication

Definition 40. Let $P, Q \in \mathbb{K}[X]$ with: $P(X) = \sum_{i \ge 0} a_i X^i$ and $Q(X) = \sum_{i \ge 0} b_i X^i$ The product of P and Q denoted PQ is defined as:

$$(PQ)(X) = \sum_{i \ge 0} c_i X^i$$
 with $c_i = \sum_{k=0}^i a_k b_{i-k}$

Proposition 3. deg PQ=deg P+ deg Q

Division

Definition 41. Let $P \in \mathbb{K}[X]$ and $S \in \mathbb{K}[X] \setminus \{0\}$

 $\exists ! (Q, R) \in \mathbb{K}[X]^2, P = QS + R \quad \text{with } degR < degS$

we call Q the quotient and R the remainder obtained on dividing P by S. If R = 0 we say that S divides P or that P is a multiple of S.

Example 33. $X^3 + X^2 + 3X - 2 = (X + 1)(X^2 + 3) - 5$