Rings and fields

Let A be a non empty set and +, \times two composition laws on A called addition and multiplication respectively.

Definition 31. $(A, +, \times)$ is a ring if the following conditions are satisfied:

- 1. (A, +) is an abelian group, which identity element is denoted by 0.
- 2. $\forall x, y, z \in E, x \times (y \times z) = (x \times y) \times z$ (we say that \times is associative).

3.
$$\forall x, y, z \in E, \ x \times (y+z) = (x \times y) + (x \times z)$$
 (we say that \times is distributive).
 $(y+z) \times x = (y \times x) + (z \times x)$

4. \times has an identity element denoted by 1.

Remarks The additive inverse of $x \in A$ is denoted by -x. If the multiplicative inverse of some $x \in A$ exits, it is denoted by x^{-1} .

Example 23.

 $(\mathbb{Z}, +, \times), (\mathbb{Q}, +, \times), (\mathbb{R}, +, \times), (\mathbb{C}, +, \times)$ are rings. $(\mathbb{N}, +, \times)$ is not a ring.

Example 24. $(P(E), \Delta, \cap)$ is a ring but $(P(E), \Delta, \cup)$ is not.

Theorem 10. Let $x, y \in (A, +, \times)$

- **1.** $x \cdot 0 = 0 \cdot x = 0$
- **2.** $(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$
- **3.** $(-x) \cdot (-y) = x \cdot y$

Let $(A, +, \times)$ be a ring and S a subset of A.

Definition 32. We say that $(S, +, \times)$ is a subring of A if:

- 1. (S, +) is a subgroup of (A, +).
- **2.** $\forall x, y \in A, x \cdot y \in A$
- **3.** $1 \in A$

Example 25.

 $F = \{z = a + ib : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .

Definition 33. Let *a* be some nonzero element of a ring *A*.

we say that a is a divisor of zero if there exists $b \neq 0$ such that ab = 0.

Example 26. Let $(\mathcal{F}, +, \cdot)$ be the ring of real valued functions $\{f : \mathbb{R} \to \mathbb{R}\}$

Since fg = 0, f and g are both divisors of zero.

Definition 34. We say that $(A, +, \times)$ is an integral ring if:

1. $1 \neq 0$.

2. $\forall x, y \in A : xy = 0 \Rightarrow (x = 0)or(y = 0)$

Example 27.

 $(\mathbb{Z}, +, \times), (\mathbb{Q}, +, \times), (\mathbb{R}, +, \times), (\mathbb{C}, +, \times)$ are integral rings. $(\mathcal{F}, +, \times)$ is not an integral ring.

Fields

Definition 35. A commutative ring $(A, +, \times)$ is called a field if every nonzero element of A has a multiplicative inverse.

Example 28.

 $\begin{array}{l} (\mathbb{Q},+,\times), \; (\mathbb{R},+,\times), \; (\mathbb{C},+,\times) \text{ are fields.} \\ (\mathbb{Z},+,\times) \text{ is not a field.} \end{array}$

Example 29.

 $F = \{z = a + ib : a, b \in \mathbb{Z}\}$ is not a field.

Example 30.

 $F=\{z=a+ib:a,b\in\mathbb{Q}\}$ is a field.