
ALGEBRA 1 LECTURE NOTES

BENSID Y. BOUIZEM N.

2023

PREPARATORY DEPARTMENT

ESSAT SCHOOL

TLEMCEN-ALGERIA

Contents

1	Logic, sets and mappings	5
	Logic	
	Logical operators	5
	Quantifiers	6
	Reasoning methods	6
	Sets	8
	Subset	8
	Operations on sets	8
	Mappings	9
	Image, pre-image	9
		10
	Injection, Surjection, inverse map	10
2	Algebraic structures	13
	Groups	13
	Subgroups	14
	Cyclic groups	14
	Homomorphism	14
	Rings and fields	15
	Fields	16
_	Dalumamiala	17
3	Polynomials	17
	Operations on polynomials	17
	Addition	
	Multiplication	18
		18
	Roots of a polynomial	19
	Root multiplicity	19
		20
	Irreducible polynomial - GCD - LCM	2
		22
	Partial-Fraction Decomposition in $\mathbb{R}(X)$	22

Chapter 1

Logic, sets and mappings

Logic

Definition 1. A statement (P) is a declarative sentence that is either true or false but not both.

Logical operators

Definition 2 (Negation). The negation of P denoted by $\neg P$ is the statement that says the opposite of P.

P	1	0	
$\neg P$	0	1	

Definition 3 (Conjonction). The conjonction of P and Q denoted by $P \wedge Q$ means (P) and (Q).

P	1	1	0	0
Q	1	0	0	1
$P \wedge Q$	1	0	0	0

Definition 4 (Disjonction). The disjonction of P and Q denoted by $P \vee Q$ means (P) or (Q)

P	1	1	0	0
Q	1	0	0	1
$P \lor Q$	1	1	0	1

Definition 5 (Conditional). The conditional statement or implication denoted by $P \Rightarrow Q$ reads "if P then Q" or "P implies Q". P is called the hypothesis and Q the result. The statement $Q \Rightarrow P$ is called the converse of $P \Rightarrow Q$.

P	1	1	0	0
Q	1	0	0	1
$P \Rightarrow Q$	1	0	1	1

Definition 6 (Biconditional). The biconditional statement denoted by $P \Leftrightarrow Q$ reads "P if and only if Q".

P	1	1	0	0
Q	1	0	0	1
$P \Leftrightarrow Q$	1	0	1	0

Definition 7 (Logical equivalency). If the biconditional statement $P \Leftrightarrow Q$ is true, we say that P and Q are logically equivalent and we write $P \equiv Q$. In this case P and Q are both true or both false.

Theorem 1.

- 1. $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$ (Contrapositive)
- 2. $\neg (P \Rightarrow Q) \equiv P \land \neg Q$ (Negation of implication)
- 3. $P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$

Theorem 2 (Morgan's Law).

- 1. $\neg (P \land Q) = \neg P \lor \neg Q$
- 2. $\neg (P \lor Q) = \neg P \land \neg Q$

Quantifiers

Let U be a nonempty set

Definition 8. The universal quantifier denoted by $(\forall x \in U), (P(x))$ reads "the statement P holds for all values of x in U".

Definition 9. The existential quantifier denoted by $(\exists x \in U), (P(x))$ reads "the statement P holds for at least one value of x in U".

Theorem 3 (Negation of quantifiers).

- 1. $\neg [(\forall x \in U), (P(x))] \equiv [(\exists x \in U), \neg (P(x))].$
- 2. $\neg \Big[(\exists x \in U), (P(x)) \Big] \equiv \Big[(\forall x \in U), \neg (P(x)) \Big].$

Reasoning methods

Proof by Contrapositive

We know from theorem 1 that: $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$

Example 1. Let us prove that:

$$\forall n \in \mathbb{Z} \quad [n^2 - 6n + 5] \text{ even} \Rightarrow n \text{ odd}$$

It is simpler to prove the contrapositive:

$$\forall n \in \mathbb{Z} \quad n \text{ even} \Rightarrow [n^2 - 6n + 5] \text{ odd}$$

Let $n \in \mathbb{Z}$

$$n$$
 even \Rightarrow $n=2k$ with $k\in\mathbb{Z}$
 \Rightarrow $n^2-6n+5=(2k)^2-6(2k)+5$
 $=2(2k^2-6k+2)+1$
 $=2k'+1$

We conclude that $n^2 - 6n + 5$ is odd.

Proof by Contradiction

To prove that a statement P is true by contradiction, we assume that $\neg P$ is true and we must find some contradiction.

Example 2. Let us prove by contradiction that forall prime numbers p, \sqrt{p} is irrational. Suppose that:

$$\sqrt{p} \in \mathbb{Q} \Rightarrow \sqrt{p} = \frac{a}{b} \text{ with } GCD(a,b) = 1 \Rightarrow p = \frac{a^2}{b^2} \Rightarrow a^2 = pb^2$$

$$p|a^2 \Rightarrow p|a \Rightarrow a = pk \Rightarrow a^2 = p^2k^2 = pb^2 \Rightarrow b^2 = pk^2$$

$$p|b^2 \Rightarrow p|b \Rightarrow p|GCD(a,b) \Rightarrow p|1$$
 (logical contradiction)

We know from theorem 1 that: $\neg(P\Rightarrow Q)\equiv \Big[P\wedge (\neg Q)\Big]$

Example 3. Let us prove by contradiction that:

(forall prime numbers p, \sqrt{p} is irrational) \Rightarrow $\left(\sqrt{2}+\sqrt{5}\right)$ is irrational

Suppose that $\left(\sqrt{2}+\sqrt{5}\right)\in\mathbb{Q}\Rightarrow\sqrt{2}+\sqrt{5}=\frac{a}{b}$ with $\gcd(a,b)=1\Rightarrow\sqrt{5}=\frac{a}{b}-\sqrt{2}\Rightarrow 5=\left(\frac{a}{b}-\sqrt{2}\right)^2$ $\Rightarrow 5=\frac{a^2}{b^2}+2-2\frac{a\sqrt{2}}{b}\Rightarrow\sqrt{2}=\left(3-\frac{a^2}{b^2}\right)\times\frac{b}{-2a}=\frac{3b^2-a^2}{-2ba}\Rightarrow\sqrt{2}\in\mathbb{Q}$ which contradicts our assumption

Proof by Induction

Let $n_0 \in \mathbb{N}$

To prove that $(\forall n \geq n_0), (P(n))$ is true by induction, we must

- 1. Prove that $P(n_0)$ is true.
- 2. Suppose P(n) holds true for some value $n > n_0$.
- 3. Prove that P(n+1) is true.

Example 4. Let us prove by induction that:

$$\forall n \ge 1 \quad 1 + 2 + 3 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

1. We prove that P(n) is true for n=1

$$\frac{1(1+1)}{2} = 1$$

- 2. Suppose that P(n) is true for some $n \geq 1$, ie: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- 3. We prove that P(n+1) is true i.e. $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$

$$\sum_{k=1}^{n+1} k = (1+2+3+\dots+n) + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$