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Introduction to theory: basic definitions

A general nonlinear dynamic system may be modeled by a finite number of
coupled first-order ordinary differential equations.

&= f(t,x,u) (1)
where x = [z1,--- ,x,]T € R": state vector, n: system order,
u=[uy, - ,uy,]T € R™: input vector (control, disturbance).

f(.) is a vector field in R™ : a function associating a vector to n-dim point x.
Initial condition: z(ty) = (21(0),z2(t0), -+, zn(to))

Eq. (1) is called state equation.

Solution is in the form z(to,t) that defines a family of time trajectories in

the state space (also referred as phase space).Imposing the initial condition
x(tp) determines one unique trajectory.

Another equation named output equation:
y=h(t,x,u) 2)

where y = [y1,- -+ ,y,]T € RP : output vector.
Egs. (1) and (2) together are called state-space model.
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Introduction to theory: basic definitions

Analysis : unforced state equations

= f(z), f:R*"—=R" time-invariant (autonomous)
&= f(t,z), f:RxR®™—=R"™ time-varying (Non-autonomous)

Control design:

& = f(z,u), f:R* xR™ — R" autonomous with inputs
&= f(t,z,u), [ RXR" X R™ — R™ Non-autonomous with inputs
z=f(z)+g(@)u, f:R*" =R g:R™ - R" affinein u

Linear systems: if f and A are linear functions of z and u

= f(x) - & = Az autonomous
= f(z,u) — & = Ax+ Bu
&= f(t,z,u) — & = Alt)z+ Bt)u
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Introduction to theory: basic definitions

For linear systems

The Linear Systems satisfy the superposition principals:
Homogeneity: f(az) = af(z), Va € R.
Additivity: f(z +y) = f(z) + f(y), Vz,y € R™.
Unique equilibrium point.

Stability is independent of initial conditions z(t) = 2(0)eA*
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Introduction to theory: basic definitions

For nonlinear systems

Non superposition principle = More complex behavior

Example : Under-water vehicle v + |v|v = u

Settles faster in response to positive step.
Scaling input does not result into the same scaling in output.

u=1
=0+ |vslvs = 1
= Vs = 1
u =10
=0+ |vslvs = 10
= Vs = \/E
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Nonlinear System Examples

Output

——— Nonlinear

Input Input Input
Figure: A nonlinear system is a system in which the change of the output is not
proportional to the change of the input.
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Nonlinear System Examples

Systems with essential nonlinearities in the model

Self-balancing vehicle Euler’s rotation equations

r= Z ¢* sin(p) — @ cos(p)) + M, Jowe = =(Jz = Jy)wyw + My

ar Jywy = —(Jz — J)wew, + M,
yWy Y

¢ = Z (gsin(p) — Zcos(p)) — J\Z, oo = —(Jy — Jo)wawy + M,
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Nonlinear System Examples

Systems with saturation

& = Ax+ Bsat(u) LS
u = PID(x)
ka [
Jou If Jul <1 3
i) = { sgn(u) If |ul>1 ] ‘a -

The output is proportional to input for a
limited range.

Output becomes constant if input is outside
this range.
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Chapter 1

Common Nonlinearities

(Saturation characteristic)
u
e<0

/_e>0

memoryless
e u e u
—_— > > ———» T b
Two-position element Three-position element
u
é<0 J -
™~
(& u
— —>
a
_a e
Y
~N
> > e>0
Dead zone Hysteresis characteristic curve

¥
%/a :

Backlash characteristic curve
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Chapter 1

Equilibrium points

An equilibrium point represents a stationary condition of a dynamical sys-
tem. The state 2. € R™ is a fixed point for & = f(z) if f(z.) =0, Vt > 0.

If a dynamical system has an initial condition 2:(0) at an equilibrium point z,
then it will stay at . forever, i.e. z(t) = x., ¥Vt > 0.

Example 1: & = z(z — 2)?

Te 0
-\ - 2
f(@&)=0= z(x—2) —0:>{xe _ 9
This system has two isolated equilibrium points at 0 and 2.
Example 2:
& =sin(z), z(0)=xz9€R 3)

x(t) € R 1st order system (scalar state)

f(z) =sin(z) =0 =z = km, k=0,%1,42, -
This system has infinite many equilibrium points.
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Chapter 1

Equilibrium points

Non-isolated equilibria

For a linear system & = Az,

A e R™™,

If A is nonsingular (det(A)# 0), then z* = 0 is the unique equilibrium.
If A is singular (det(A)= 0), then Null space defines a continuum of

equilibria.
Example: X4
I o -1 =2 I1 Xy = =23,
X9 - -2 —4 X9
—_
T A T >
P 0 Ap—0={ 2T dm =0
—T1 — 2.%‘2 = 0

= x1 = —2x9
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Linear approximations around an equilibrium

A linear approximation of a system around an equilibrium point can be used to
study the behavior of a nonlinear system around the equilibrium point.

Local stability properties of z. can be determined by linearizing the vector
field f(x) at z.:

fxe +2) = f(ze) + of Z + higher order terms in (x —xo) (4)
N—— ox =i
=0

2a

Thus, the linearized model is : . s
= (5)

A

The solution of the linearized form (5) has the form : & = e’z

= |f Re(A\;(A)) <0, then z. is locally asymptotically stable.

= If Re(A;(A4)) > 0 for some eigenvalue \; of A, then Z is unstable.

R. MOKHTARI (SNL) Nonlinear Systems



Chapter 1

Linear approximations around an equilibrium

Example 1: Linearization of & = sin(z)

of
ox

x

— cos(z)]. = cos(2K) = 1, mneven
= Wz = sin(2K +1)r) = -1, nodd

rz=nm,n=0,+1,4+2---.
Example 2: (2nd order system)

=10 ] B

Ofi(z) Ofi(z)

af Oy Oxo 0 1
9t | opw opw | [ 1423y 27 -1 ]
Oxq Oxo
Linearization around z.(0,0) : of (x —ze) = 0 1 1
e o Te € -1 -1 X9
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Caveats:
Only local properties can be determined from the linearization.
If Re(X;) < 0 with some e-values having Re();) = 0, then

linearization is inconclusive as a stability test. Higher order terms
determine stability.

\.

Example: (a):d =23,  (b):d = —a5.
In both cases, linearized systems around & = 0 are the same: & = 0 = z(t) = xo,
but NL systems have different behaviors.

Case (a) Case (b)

N 08 06 04 02 0 02 04 06 08 1 " 08 06 w04 02 0 02 04 08 08 1
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Essentially Nonlinear Phenomena

Essentially Nonlinear Phenomena
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Essentially Nonlinear Phenomena

1. Multiple Isolated equilibrium

Linear systems have only one equilibrium point at origin or a number of non

isolated equilibrium points.

Example: Pendulum (two isolated equilibia)

Imf = —klf — mgsin(6) (6)
Define x = [ z ] . State space : S' x R
Sbl X9
Zg = —%mg — sinxy (7)

Equilibria: Two isolated E.P (0,0) and (m, 0).
Linearization :

0 1
of _ 0 L -
Sx | —%cosm —%

(stable) at 1 =0

(unstable) at zy = 7

(8)
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Essentially Nonlinear Phenomena

Stability may depend upon initial conditions

Example : The logistic equation (population dynamics in isolation)

i=fx)=re(k—2)x, r>0,K>0 (9)
growth rate

x € R, is the population size and K is the carrying capacity.
Stability can be determined from the sign of f(z) around the equilibrium.

x(f)

Equilibrium points are : (&, = 0) “9f
_ _ Te=0
=1z (K —x.)=0= xee:K 30]
Linearization :
20+

g’;l:x = (rK - 27‘av)|mc

=0 — Kr — unstable. (10) 10L
r =K — —Kr — stable

)
x Y Q ) : : -t
x=0 x=K 0 1 2 3 4
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2. Finite Escape Time

In linear case :
Solution
—

&=z z(t) = exp™ 2(0).

If A>0=limy o |2(t)]=+00. Onlyast— oo, |z(t)] = oco.

. xz1(t) 4
In nonlinear case :
Example : & = 22, 2(0) = 29, z € R
t t
=2 = az,(l)i%:lfodt
= —m+;0:t—0 210
1 -
p— ‘ »
l‘(t) 1 _y 0 it t
o
29> 0=t — o= = x(t) = 0o
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3. Limit cycles

Linear oscillators exhibit a continuum of periodic orbits (closed orbit) :
z(t+T) = x(t), Vt > 0, for somme T > 0

Every circle is periodic orbit for &£ = Ax where

_0'8 } , (A2 =%£58)

Every Periodic Orbit is a Cycle but not a Limit Cycle.
In contrast, a limit cycle is an isolated closed trajectory (closed orbit) and can
occur only in nonlinear systems.
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Essentially Nonlinear Phenomena

3. Limit cycles

Example: Harmonic oscillator k m
mi =+ kx =0 (11) G
~— ~—~

inertial term  stiffness term

X2

~
/

wo =1/ E. (A2 = Ejwo).

Amplitude of oscillations depends on initial conditions.

-2

S

Can be destroyed by small modelling imperfections.

The harmonic oscillator has closed orbits but no limit cycles. Limit
cycles cannot be generated by LTI systems.

The linear oscillator is not structurally stable. A stable oscillators
must be produced by nonlinear systems.
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Essentially Nonlinear Phenomena

3. Limit cycles

3
Example : Van der Pol oscillator a1
%
o
F—p(l—aHi+x=0 .
If £t =0= &+ 2 =0 < simple harmonic :30 DU S, S
oscillator ' i '
) Response with z(0) = 0.05, " (0) = 0.05
Ty = T2 4
{ iQ = ,u(l — £E%)(E2 — I (12) 3
Equilibrium point 1 = 0 = 7 = [0 0]7. ot
Linarization around z = (0, 0) HE }
0 1 N
4= { -1 u } .
Positive sign of p tells us that e.p is unstable. State trajectories (z(t), i(1))
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Essentially Nonlinear Phenomena

3. Limit cycles: Examples of limit cycles

Stable Limite Cycle Unstable Limite Cycle SemiStable Limite Cycle

& C N
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Essentially Nonlinear Phenomena

Irregular oscillations, never exactly repeating.
Behavior of nonlinear systems may be extremely sensive to small changes in
initial conditions/input/parameters.

Example : Lorenz system (attractor) derrived by Ed Lorenz in 1963 as a
simplified model of convection rolls in the atmosphere

The lorenz system is a 3rd order
system (3 states x,y,z).

i = oly—o)
Yy = rx—y-—uxz (13)
2 = xy—bz

. =40 20
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Essentially Nonlinear Phenomena

For continuous-time, time invariant systems, n > 3 state variable required for
chaos.

No simple characterization of asymptotic behavior.

Huge sensitivity to initial conditions.

Choatic behavior with o = 10, b=8/3, r=28 blue: (z, y, 2) = (0, 1,1.05)

red:  (z,y,z) = (0,1,1.050001)
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4. Chaos

Example: The double pendulum (System is implicit for i1 # I3)

ot g(mln—i— mz)sinf; =0 .
m2l292 + m21191 COS<91 — 92) — m2l19% sin(91 — 92)

(m1 + ml)llél + mglzég COS(91 — 62) + m2l292 Sin(91 — 92)
+ magsinfy; =0




5. Bifurcation: Fold bifurcation

A bifurcation is an abrupt change in qualitative behavior as a parameter is varied.

Examples : creation (or death) of equilibrium points (or limit cycles) and/or
change of their stability properties.

Fold bifurcation: 1st order system
Example : & = p — 22,
Equilibrium points :
+/u p >0 onestable equilibrium and one unstable equilibrium

=40 p =0 single equilibrium (called a saddle)
none 4 <0 no equilibria

/N
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Essentially Nonlinear Phenomena

5. Bifurcation: Fold bifurcation

tte = 0 is the critical value of parameter p which represents boundary be-
tween "no equilibrium points" and the presence of equilibrium points.

Creation/destruction of fixed points is called saddle node bifurcation

Linearization bifurcation diagram

) N

0| gp— { 2/ unstable x

0w |5 —2,/p  stable

w>0. N

> U

Note: .

s Rt YU
A, = % = 0 — linearization

ic:i(ﬂc)

disappears, no information about stability of the

system.
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5. Bifurcation: Transcritical bifurcation

Transcritical bifurcation: bifurcation diagram

Example : & = px — 2%, x(t) €R 4
Equilibrium points : =0. == pu.
Linearization :
5 T = >
f—,u2a_3—{ H ?f T 0 * .’ > #
ox —p if T=up o
1 <0:2=0Iis stable, T = p is unstable. et P
w>0:2 =0 is unstable, z = pu is stable.
@ @ &
< X < T —_— x
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5. Bifurcation : Pichfork bifurcation

Pitchfork Bifurcation- 2 types : supercritical Pitchfork and subcritical

pitchfork
Example 1:
& = pxr—2a® supercritical
Equilibrium points : f(Z2) =0=2Z(p—7%)=0= 2 = 0
/1, >0
5 < z N . z x

2 equilibrium points emerge when we increase (.
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Essentially Nonlinear Phenomena

5. Bifurcation : Pitchfork bifurcation

bifurcation diagram

“supercritical pitchfork"

Example 2: & = px + 23, subcritical pitchfork.
Equilibrium points :

f(i)()ﬁj(ufz)()é:f{ (ﬂ):F, L <0
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5.Bifurcation: Pitchfork bifurcation

Linearization :
sf _
of _

—-_——
~~

______ “subcritical pitchfork"
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Chapter 2: Second Order Systems

Chapter 2: Second Order Systems
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Chapter 2: Second Order Systems

Concept of Phase Plane

A second-order autonomous system is represented by two scalar differential
equations

i1 = fi(z1,72) (1)
o fa(21, 22)
Let z(t) = (z1(t),xz2(t)) be the solution of (1) that starts at a certain initial state

o = (Z10, xzo)

(z
f(.) is called a vector field

The set of points {(¢,21(t), z2(t));t € R} with (z1,22) a solution of (1)
(and z1(tg) = w19 and z5(tg) = x20 for some ty) is called the trajectory
or solution curve (through (19, 220))-

The set of points {(z1(t),x2(t));t € R} with (z1,22) a solution of (1)
(and z1(tg) = 10 and x2(tg) = 220 for some ty) is called the fOrbit or
Phase Curve (through (210, %20)).

\
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Chapter 2: Second Order Systems

Concept of Phase Plane

An orbit that forms a closed curve is called a closed orbit.
The family of all trajectories of a dynamical system is called the phase

portrait.

X2

X(t)

R. MOKHTARI (SNL)

X1

|

s
WA
>

()
1)
S8

|
()

Nonlinear Systems

phase-plane




Chapter 2: Second Order Systems

Vector fields and Orbits

Example: Uncoupled system
{ i o= 2 = fo(ay) f is a vector field in R2.

v = -3y = f,(z,y) Solution : (zge?!, yoe =)
y Orbits / Possible trajectories

y

RERANN J
/ v\

Direction \‘A/ - ’t\ NS //

and e e i i W

oo NS Mo
forany \ \1/ /

y) \ T /Vectorfield

Rate of change, velocity

N

-

Phase portrait
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Phase plan analysis

Problem

When z(t) € R?, study state trajectories around an equilibrium state

X=X

Xx = f(x) _[Ox=Dif| x| Analysis of dx(t)

X: equilibrium dx = 0: equilibrium

\
\
\
\

Analysis of x(t) around X ?
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

Consider the following linear system

& = As, A:[i Z} @)

(a,b,c,d) € R. Change of coordinates: z(t) = T~ tx(t), T € R?*? invertible.
(t) =T ra(t) =T Ax(t) = T T AT2(t) = J2(t)
The system 2 = Jz is equivalent to the system & = Ax.

Remark
A and J = T~1AT are similar => they have the same eigenvalues

One can always choose T such that J is in real Jordan form

the new coordinates are called normal
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Behavior of Linear second Order Systems

There are three possible Jordan forms for A:
Different real eigenvalues.
Equal real eigenvalues.

Complex conjugate.

A O Ak
0 Ao 0 A
where k=0 or 1.

In addition, we need to consider the case where at least one of the
eigenvalues is zero.
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Behavior of Linear second Order Systems

A0

Case 1: [ 0 A

In this case

] A1 € R, and independent eigenvectors

AV1 = )\1V1, AV2 =Avyg =T = [V1 V2]

where vi and vy are the real eigenvectors of A associated with A\; and Ao,
respectively.

The change of coordinate z = T~ 'z, transforms the system into two decoupled
first-order differential equations, i.e.,

21 = Mz, Zo = M 22

with solution

)\lt Z20 Z)\Q/)\l
1
(z10)*2/M

z1 (t) = Z10€ g Z9 (t) = 2206>\2t

- Zg(t) =

R. MOKHTARI (SNL) Nonlinear Systems



Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called stable node

1.0

0.5

—6.5 0.0

-1.0

<

Nonlinear Systems
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Behavior of Linear second Order Systems

Example: Consider the linear system

r = —bx—2y
y = —2x-9y

eigenvalues : \; = —10; Ay = —5 = stable node

eigen-vectors : = ( O'i ) , v = < O'? > ,

!’
7
D = (-0.93, 2.06) )
o ’ B =(2.28,1.6)
4
S - ’
\\ 4
\\ 7/
~ N 7/
So ’
~ ~ 7/
~ \. 7/
) C=(1.09, -2.28)
A=1(-26,23 ',
'
'
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called Unstable Node

1.0

0.5

-05 0.0

-1.0

x(t)

Nonlinear Systems
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Behavior of Linear second Order Systems

Example: Consider the linear system
T = T—2y
y = z+4y

eigenvalues : \; = 2; A\y = 3 = unstable node

eigen-vectors : v_f = ( _12 ) , @ = < _11 > ,

* C =(16.03, 12.17
B=(16.64 -6.54) ( )

A= (-21.46, -1.38) DS, T4 64)

. .
R. MOKHTARI (SNL) Nonlinear Systems



Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called stable/unstable degenerate node

Stable degenerate node: \;=\; < 0

100

-0.5¢

-1.0r

0.01

0.5f o
o=

////4, /fm‘\‘\\

SN

210 <05 0.0
x(1)
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7

vy

f4

1
i

,
/.,
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v
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called saddle

1.0

0.5

—6.5 0.0

-1.0

05 1.0

0.0

-0.5

-1.0

/// ~ / \ / \ ~ - ‘\\‘4

/4/4/4/4%/ w4, /7 g

, /(/v/ 4 \,;\\\ s 4

DN g

R

-~ S 3 3 2
()7

x(t)

Nonlinear Systems
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

Example: Consider the linear system

T = 3r+4y
y = x
eigenvalues : =4; Ay = —1 = Saddle
w-(1). #-(7)
eigen-vectors : v{ R Ug = 1 R
y
3 D =(-2.32,2{39)

A= (-2.95, 2.66)}\Q

T B=(217,-168)

F(1.81,-2.14) v

R. MOKHTARI (SNL) Nonlinear Systems
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Behavior of Linear second Order Systems

Example: Consider the linear system

T = 3xr—vy
) = —3x+vy
eigenvalues : 4 M =0= degenerate Source
- ( -1 ) < 0.3333 )
eigen-vectors : v{ 1

y ‘

O

,
;
3 (-0,24,1.44)

he 1
RN B =(1.35,1.84)
\\\ II
\\ "

A=(-1:18,-1.55) YO\% -2.01)
1 \s
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Behavior of Linear second Order Systems

Example: Consider the linear system

r = -2
Yy = —2z—4y

eigenvalues : Ay = —5; Ao = 0 = Degenerate Sink

0.5 -2
()=

y

eigen-vectors :

D =(-0.66, 3.7)'y

Ta s B =(3.25, 2.1)

’
N ’
L ’
~o U
~¢ ’
S X

/

A= (-2.73,-1.43)

J C=(-004,-287)
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Behavior of Linear second Order Systems

Case 2: { 3 i } A € R, One can show that the state trajectories are given by

: At At
Z21 = z10€"" + z9pte (3)
2:’2 = Zgoekt

Assume z90 # 0. If A # 0, from (3-b-) one gets

ooy (20)

220 A 220

and using (3-a-) one obtains

. ZQ(t) l n Zg(t) 5
z1(t) = 210 o + )\1 ( > 2(t)
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called stable/unstable improper node —
Only the z; axis is invariant.

00 05 1.0

x(1)

-0.5

-1.0

Figure: (a) A <0, (b)) A >0

00 05 1.0

-0.5

-1.0

x(t)

Nonlinear Systems
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Behavior of Linear second Order Systems

Case 3: Complex conjugate eigenvalues A\ = a+ ;5 €C
Let vi = u + jv, vo = u — jv be the eigenvectors associated to the eigenvalues
A =a+jB, Ao = a—jB. One has

Alu+jv) = (@ +jB)(u+jv)  Alu—jv) = (a—jp)(u—jv)
Summing and subtracting: Au=aou—pfv  Av=Lfu+av

=1 = [Vl Vg]

vi and vy are the real eigenvectors of A associated with A\; and Ay, respectively.
Defining the change of coordinates

r=1/2}+ 23 6 = tan~! <22>
21

we can write the dynamic equations in polar coordinates as
7 = ar, 0=p

with solution
r(t) = roe®t, 0(t) =0 + pt

R. MOKHTARI (SNL) Nonlinear Systems




Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

The origin is called Stable Focus @ @

1.0f

0.5+

y(t)

[ [[T44
0.0r 4, !!
AN

-0.5F "

)]

-1.0f

x(t)
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Behavior of Linear second Order Systems

Example: Consider the linear system

T = —22x—-29y
y = 2942y

eigenvalues : Ay = —0.1 + 2j; Ao = —0.1 — 2j = Stable Focus

eigen-vectors : U] = ( L ig % >’ W= ( . 219+ y )

B = (0.86; 2.07)

D ={-025,1.25)

C* (382 -3.63)
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Behavior of Linear second Order Systems

The origin is called Unstable Focus @ @

1.0r +/

0.5} '/”"//4 !

< oo
05} /;////// i ]
1ol v //

10 -05 00 05 1.0
x(1)
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

TIO00N
;///// \
; «/// / \

1.0

0.5

—6.5 0.0

S

S
o o

A

1.0

0.5

—6.5 0.0

-1.0
A

-1.0

The origin is called Center

x(t)

Nonlinear Systems
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Behavior of Linear second Order Systems

Example: Consider the linear system

& = —3zx+10y
y = —x+3y

eigenvalues : \; =0+ j; Ay =0 — j = Center

eigen-vectors : THE ( 31+Oj )7 v3 = ( 3Ii)j )

y

B = (0.86,2.07)

%

A= (-0.83, -2.95)

D =(0.99,.0.79)
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Chapter 2: Second Order Systems

Behavior of Linear second Order Systems

Phase Diagram All of these behaviors can be classified according to the trace T,
and the determinant Det of the matrix A. Recall that for a matrix

a b
-0 ]
Find the eigenvalues of A :
det(A—X)=0= a—A di)\ ‘ =X~ T A+ Det =0

Thus the eigenvalues are

Tr(A) = a+d=XM+X= 3T.(A) = m (mean)

Det(A) = ad—bc= A2 = p (product)

A, Ao = mE/m?2-p

R. MOKHTARI (SNL) Nonlinear Systems



Behavior of Linear second Order Systems

The values of (m,p) determine the equilibrium type.
If p <0, then the eigenvalues are real with opposite signs (saddle node).

if m? < p, then the eigenvalues are complex with a real part (spiral: unstable
if m > 0 and stable if m < 0).

If m =0 and p > 0, then the eigenvalues are purely imaginary (a center).

p > 0 and m? > p then the eigenvalues are real with the same sign (a node:
stable if m > 0 and unstable if m < 0).

For linear system

The global qualitative behavior is determined by the type of equilibium point.
For nonlinear system Only local qualitative behavior in the vicinty of equi-
librium point is determined by the type of equilibium point.

R. MOKHTARI (SNL) Nonlinear Systems
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Behavior of Linear second Order Systems

Stable spiral

Unstable spiral

(12—44) = 0

Degenerate (e} (o) 5
stable node egenerate
unstable node
Stable node Stable star center Unstable node
@ Unstable
star

il

il

!
T <<

T

Line of stable
fixed points

P

Line of unstable
Fixed points

«

Saddle
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Qualitative Behavior Near Equilibria

Given the nonlinear system
1 = fi(z1,22)
. 4
ty = fo(w1,72) )
let us assume x, = (z1¢, T2e) is an equilibrium point of (4) ie.,
fl(xleax2e> = fQ(xlevaS) =0

f1, f2 are continuously differentiable about (z1e, Z2¢)
Since we are interested in trajectories near (x1., x2.), define

T1 = T1e + I1, Ty = Tge + T

Z1, ©o are small perturbations form equilibrium point.
Expanding (4) into its Taylor series

iy = d1e + Ty = f1(@1e, T2e) + %(lx) 1+ %(f) T2+ HO.T
—_— x Te

. . 2 ) ~ ) ~

By = T1e + 71 = f1(T1e, T2e) + 72;(? T+ 7?1(:) Ty + H.O.T
N————— Te

0

R. MOKHTARI (SNL) Nonlinear Systems



Chapter 2: Second Order Systems

For sufficiently small neighborhood of equilibrium points, H.O.T. are

negligible
T1 = a1+ a1l _ofi 19
x o ~ ~ Qj5 = —— 5 =1, 4.
Tz = a21T1 + AT oz |,
The equilibrium point of the linear system is
gﬁ gL
~ - a a @ 2
T=Az, A= R = §—£
az1 A22 5 fo 5fo Te
Sz1  dwa

Matrix % is called Jacobian Matrix .

The trajectories of the nonlinear system in a small neighborhood of an
equilibrium point are close to the trajectories of its linearization about that
point:
if the origin of the linearized state equation is a

e stable (unstable) node, or a stable (unstable) focus or a saddle point,

then in a small neighborhood of the equilibrium point, the trajectory of the
nonlinear system will behave like a

e stable (unstable) node, or a stable (unstable) focus or a saddle point.

R. MOKHTARI (SNL) Nonlinear Systems



Qualitative Behavior Near Equilibria

Example i = @ _x? +9
iy = 2(2? —13)

Equilibrium points: f(z.) =0 : (=1,-1), (2,2), (1,-1), (=2,2)
Linearization :

of () {_2951 1}

ox 4x4q —4xs
Linearization around (—1, —1) Linearization around Z = (2, 2)
e U = I~ B Y
Oz z=(-1,-1) £ 2 O 7=(2,2) L0 4
Eigenvalues : = {3 + j/3} Eigenvalues : = {—6 & 2v/3}
= Unstable focus type of equilibrium. = stable node type of equilibrium.

R. MOKHTARI (SNL) Nonlinear Systems



Qualitative Behavior Near Equilibria

Linearization around Z = (—1,—1)

of (x) _ [ -2 1 ] !
z=(—1,0) 4 4

Oz
;  Eigenvalues : = \y = 1 +,/13 > 0

Ae=1-/13<0
= Saddle type of equilibrium. o

Linearization around = = (-2, 2) -1 p

o 2 [ R ] h

ox
Eigenvalues : = A\ = =2+ 27 >

A=-2-27<0
= Saddle type of equilibrium.
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Chapter 2: Second Order Systems

Qualitative Behavior Near Equilibria

Nonlinear phase portrait

Linear phase portrait

3 3
2 2
1 1
= g0
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2
x(t) x(t)
Displacement Velocity
x(t) y(t)
1
-1 2 4 6 8 10\12 /44 | 4
-2 2
_3 TN t
-4 2 4 6 8 WM
-5 -2

R. MOKHTARI (SNL)
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Example: The
Liénard
equation (red)
and its
linearization
(black).
Parameter
w=10.95




Chapter 2: Second Order Systems

Qualitative Behavior Near Equilibria

Nonlinear phase portrait Linear phase portrait
3 3
2 2
1 1
g o =
-1 -1
-2 -2
-3 -3
-2 -1 0 1 2 -2 -1 0 1 2
x(®) x(t)
Displacement Velocity
() y(®)
9 3
2
1 1
t t
1 15 20 25 _1 1 20 25
-1
-2

Example: The
Liénard
equation (red)
and its
linearisation
(black).
Parameter
w=—0.35
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Example: ambiguous borderline case

1 = —xo+ pri (2] + 23)
——— —
nonlinear terms (5)
—N—

iy = m1+ pwa(ai + 73)

Fixed point : (z1e,z2¢) = (0,0).
Linearization :

Ta:l 89:2 J—
diy iy

Oxq Oxo 0,0

It is important to note that the linearized system does not depend on the
control parameter (.

Classification of the fixed point of the linearized system.
Trace of the system matrix is T, = 0.
Determinant of the system matrix is p = 1.

The linear fixed point is a centre.



Sheep y(t)

Chapter 2: Second Order Systems

Example : The Lotka-Volterra competitive cohabitation model2 from ecology
competitive cohabitation of rabbits and sheep. The model has the following form:

3.0

2.5

2.0

1

2l

1.0

0.5

0.0

P o= 3—z)—2
R ©
where = and y are the sizes of rabbit and sheep populations, respectively.
{0, 2} {1, 1}

1.0 10] =2z
A i
2 e

/) | B s \\%‘f’f/ﬁ/gf G _os5| 7% /f':‘»}»&\
X@%ﬂ%&%ﬁ?ﬁ; o N Nt
s o 0002040608 1.0 -1.0-05 00 05 1.0
““Dj’{/ %)2:':/:;2 ji 0.0 .0
N — 1.00 44477 . . 1.0f -
e Wt 2 e
yf/////i%f%%?i Jos i ////7///?/? Ry
W | B n;f//ﬁ/' R =
e (o | Boa i | S04 P
- 0.0 /;/g:'gfé{:’r 0.0 — T
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 -1.0-05 0.0 05 1.0

Rabbits x(t)

Rabbits u(t)

Rabbits u(t)
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Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

imaginary axis.

Hyperbolic equilibrium point:

linearization has no eigenvalues on the

If 2. is a hyperbolic equilibrium of a planar dynamical system & = f(x),
x € R? then there is neighborhood U around z. and a homeomorphism*

h:U — R?

that maps the nonlinear trajectories in U to the linear trajectories in R2.

homeomorphism: a continuous map with a continuous inverse (i.e. a change of

coordinates)

x1 90

02

o

00

X

02

02

o

0.0

o

02

X1
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Chapter

Example: Consider the non-linear autonomous system

= —ﬂ[l

I

acg—i—ac%

T2

0=z =(0,0)7.

T
-1

ium point

ilibri

Equ

um.

1 = saddle type of equilibri

Ao =

)

At

Eigenvalues

[ N NN NENENANN
[ S NN NN
[ S NN
[T NN N NN
[N NN
[ NN
[N

[N

AL NN

Wrvssoeee

11777 7ccceeee

V117777
V11177777000 rn
V111777700000
V1111777777772
VIl 177777777
VWLl 11177770777
VWbl 7770777

Nonlinear Systems
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Chapter 2: Second Order Systems

Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Example
¥ = —x9 + pxi(z?+23) (7)
By = x4 pao(e]+a3)

There is only one equilibium point at (0,0), and the linearized system at this
point is

. 0 -1
£17|:1 0 :|:>)\1’2{:|:J}

— the equilibrium point is center. Since this equilibrium point is

non-hyperbolic = No conclusion about the behavior of the nonlinear
system near (0,0)

R. MOKHTARI (SNL) Nonlinear Systems



Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

System (7) is analysed in polar coordinates. Usually a direct coordinate transform

{xl = rcosf {r = \/x%—ka:% (9)
X2 ’

= rsinf 0 = tan(z2/x1)

where r = r(t) and 6 = 0(t), is used. We are searching a system in the form:

ro= fl(T‘, 9)
{ 9 f2(7”, 0) (10)

where functions fi(r,0) and fa(r,0) are to be determined. We are interested in
temporal dynamics of (9)

opr  9uydy 2wy Lp x1 f1(x1, x2) + 22 fo(21, T2)

. . ’r
T1T2 — T2T] = w1 fo(1,2) — 22 f1(71, T2)
i i+ 3

sec20f = (1+tan?0)f =

R. MOKHTARI (SNL) Nonlinear Systems
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Chapter 2: Second Order Systems

/)

U
"
I

7

#

7
4

/;if/

r

Z

-
o
=

After developing (11). The system (7) has been represented in polar coordinates.

Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria
Resulting decoupled equations

o\ T

-1

-1

-2

x(t)

x(t)

x,(t)

pn>0

Figure: u <0,

Nonlinear Systems
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Non-existence of Periodic Orbits

Bendixson criterion gives a sufficient condition for detecting the absence of
periodic orbits for second-order systems (Limit cycles or neutrally stable cycles).

Bendixson criterion:

For a time-invariant planar system
&1 = fi(x1,22), B2 = fo(21,22)

If div(f) = V.f(z) = [9/0z1 /0] [ g } — 0f1/8%1 + Bfs/zs is
not identically zero and does not change sign in a simply connected region
D, then there are no periodic orbits lying entirely in D.

\.

Example 1: @ = Az, x € R? can have periodic orbits only if div f= trace(A)=0.,

Sty

Unless trace(A) = 0 = non periodic orbits.

R. MOKHTARI (SNL) Nonlinear Systems
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Example 2:

1
)

T2

—bx9 + 21 — 25 + 2319, §>0
_ 6f1 af? 2

V.f(z) = D, + Dy =x7—9¢

V.f(z) =0, then xz; =+Vs

Therefore, no periodic orbit can lie entirely in the region

x1 €] — o0, —Vé[, ]—=V6,V8[, V5, 400

not possible

x2

x1=— V3§

1
x1'= V'8

R. MOKHTARI (SNL)
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Periodic Orbits in the Plane

Let ¢(t,x0) denotes the solution of & = f(x) with initial condition z(0) = z.

Definition: Invariant sets

A set M C R™ is positively invariant if, for each o € M, ¢(t,z0) € M
for all ¢ > 0.

n(x)

IfV:R" > RisofclassC' and M = {z : V(z) <
¢}, then M is invariant if

f(@).VV(z) <0 Vr:V(z)=c
i.e. if x is on the boundary of M, then the vector

f(z) points into M.

R. MOKHTARI (SNL) Nonlinear Systems
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Non-existence of Periodic Orbits

Example: Consider a closed orbit & = f(x).

f(z) is tangential to the trajectory x. Along this closed
trajectory : f7(z).7i = 0.

The interior of any closed trajectory is a positively
invariant set.

Example:

If f(z)T.7 <0 then M is positively invariant.

i: outward normal on a boundary of M. M
Along boundary of M:for all x € OM = [f(x)]T.77 < 0.

R. MOKHTARI (SNL) Nonlinear Systems



Periodic Orbits in the Plane

Example: Predator-prey model

prey : 1 = (a—bxa)xy
predator : @y = (cxq —d)xs

a,b,c,d positive parameters.

Equilibrium points : T = [ 8 } . T= [ d/c ] -

Clearly [f(z)]*.7 = 0 along the boundary of M = {z; > 0,25 > 0}, which means
the first quadrant M is positively invariant.

s 2]

A1 =a >0 and Ay = —d < 0 = saddle type of equilibrium.

Linearization around 7 = (0,0) : A = %

R. MOKHTARI (SNL) Nonlinear Systems



Chapter 2: Second Order Systems

Periodic Orbits in the Plane
Example 2:

i = a1 42— 21(2? +23)
gy = =21+ 39 — w2(2? + 23)

Show that B, := {x € R?/x? + 25 < r?} is positively invariant for sufficiently
large r (to be determined). We want to calculate [f(z)]7n(x)

V(z) =22 +22 =12 = n(z) = VV(z) = [g“ﬁ?gi;}:[gg

A

[f (@)]" () = aV + fog awz
= —2(2? +22)% + 222 + 223 — 27179 i ()’

—2x9w9 < 23 + 2%  (completion of squares).
Therefore [f(z)]T .n(z) < —2r%(r? —3/2)) <0 if \J
r? > 3/2.

R. MOKHTARI (SNL)
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Existence Theorem of Limit Cycle

Poincaré-Bendixson Theorem:

Let M be a compact (closed and bounded) set in R?, which is positively
invariant for & = f(x), x € R%. If M does not contain an equilibrium point,
then it contains a periodic orbit.

M M

The "no equilibrium condition" in PB Theorem can be relaxed as: " M can
have one equilibrium point which is either an unstable focus or an unstable
node, then there is a periodic orbit.

R. MOKHTARI (SNL) Nonlinear Systems
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Example: harmonic oscillator

:'.Cl . 0 1 X1

ig o -1 0 X9
For any R > 7 > 0, the ring {z : 7% < 29 + 2o < R%} is
compact, invariant and contain no equilibria.

X1

[f(z)]T.n(z) = 0 everywhere and PB Theorem state there exists a perlodlc orblt

(or more) in M. i 7
Example:2 /// //é
T = To + 1173 ////é
T, = —x1+ x%xg gdat

Linearization around the equilibrium at # = (0 0)7 yields //’;éj’/)
| | 0 1 1 % ///
e | | =1 0 To ///f////

which exhibits a continuum of periodic solutions. However, for this nonlinear
system, we have

\\\\\\\R\

V.f(x)=ai+22>0, Vr#0

Hence, Bendixson theorem leads to the conclusion that this dynamical system has
no nontrivial periodic solutions.
R. MOKHTARI (SNL)
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Existence Theorem of Limit Cycle

Example:3

x1 + 29 — 21 (23 + 23)
—221 + T9 — To(xF + 23)

T
T

R °
| =

lzzz?

NS
NI

7 e
£ naa
¢ /%g ‘%\%

FAIIEEY

[f(@)] n(z) <Oiffr? =22 + 22 > 3/2.ie. B, =2 € R?/2? +23 <r?is
positively invariant 7 > 1/3/2 but contains the equilibrium z. = 0.

of
ox

-2 1

Therefore, B, must contain a periodic orbit.

26

= [ L1 } , Al = 1+ jv/2, unstable focus 1!
=0

SN A A ]
SN

RN

T-2- 0 1 .2
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Limit Cycle: Stable Limit Cycle

All trajectories in the vicinity of the limit cycle converges to it as t — oo

Example:
i — x9 — a1 (23 + 23— 1) ,
¥ = —x1 — a2t +23-1)
o= —r(r?-1)

ifr>1—7>0 converging i
ifr>1—=r<0 converging
ifr=1—7=0 remaining

R. MOKHTARI (SNL) Nonlinear Systems



Limit Cycle: Unstable Limit Cycle

[ All trajectories in the vicinity of the limit cycle diverges from it as ¢ — oo

Example
i = wpta(eitald—1) T
¥ = —x1+ae(z?+23-1)
Po= r(r?-1)
NN

ifr<1—7<0 diverging
ifr>1—7r>0 diverging

ifr=1—7=0 remaining

R. MOKHTARI (SNL) Nonlinear Systems



Limit Cycle: half-stable Limit Cycle

Some of the trajectories in the vicinity of the limit cycle converges to it,
while others diverge from it as t — oo

Example: o}
j:l = To — .’I,'l((E% + ZC% - 1)2 [
¥ = —xp —xo(2? + 23— 1)2
N Po= —r(r?—1)2
0 = -1

ifr<1—7<0 diverging
ifr>1—r<0 converging

ifr=1—7=0 remaining

R. MOKHTARI (SNL) Nonlinear Systems
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Chapter 2: Second Order Systems

Bifurcation: Holf Bifurcation

Example: Supercritical Hopf bifurcation

{x'1 = —zy+ai(p— ] —a3)

o= r(u—)
iy = +x1 —22(p— 2 —23) — { 0 =1 (15)
Equilibrium points : 7(u — %) = 0.

Note that a positive equilibrium for the r subsystem means a limit cycle in the
(21, 22) plane.
< 0 : stable equilibrium at » = 0.

1 > 0 unstable equilibrium point ar r =0
and stable limit cycle at r = /p.

The origin loses stability at 4 =0 and a

stable limit cycle emerges. (9 |
v
-
o. P T JOSN S
. 'QP" -6
u<o0 > 0,Im(\/7) € R\Q p >0,Im(\/7) €Q

R. MOKHTARI (SNL)
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Bifurcation: Holf Bifurcation

In Supercritical Hopf bifurcation by increase of i near zero, the stable equi-
librium point becomes unstable but a stable limit cycle appears. Hence, this
is a Safe bifurcation.

R. MOKHTARI (SNL) Nonlinear Systems
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Existence and Uniqueness of Solutions

To be a useful mathematical model of a physical system, the state equation

&= f(t,x), x(to) = g

must have the following properties:
@ Existence of solution.
@ Uniqueness of solution.
o Continuous dependence of solution on initial conditions.
@ Continuous dependence of solution on parameters.

The first question ask is the Cauchy problem:

Definition (Cauchy Problem)

The Cauchy problem is to find a unique, continuous z : [0,t;] — R™ for
some t such that & = f(t,z) for all t € [0,¢y].

R. MOKHTARI (SNL) Nonlinear Systems



Existence of Solutions

There exist many system for which no solutions exists or for which a solution only
exists over a finite time interval.

Example Consider
p Finite escape time of dx/dt = x*

I
i‘=$2, JI(O) = X0 45 3
We have
d 1 1
O —dt, ——=t+C=>C=——
x x Zo

The solution

x(t)

B 1 —l‘ot

Bl ettt Yoot o ottt s |

If o > 0, the maximal solution is
defined on (—o0, 1/x¢].

The escape time | t, = % Figure : Simulation of 2" = 2% for several

R. MOKHTARI (SNL) Nonlinear Systems



Non-Uniqueness

Example: A classical example of a system without a unique solution is
=23 z(0)=0

For the given initial condition, it is easy to verify that

2(0)=0  and x(t)—<23t>3/2

both satisfy the differential equation.

R. MOKHTARI (SNL) Nonlinear Systems



Existence and Uniqueness of Solutions

Theorem : Local Existence and Uniqueness

Let f(t,x) be a piece- wise continuous function in ¢ and satisfy the Lipschitz
condition

I1f(t, ) = fty)ll < Lllz -yl (1)
Ve,y € B(xo,r) = {z € R"|||x — x0|| < 7}; VE € [to,t1]. Then there exists
some ¢ > 0 such that the state equation & = f(¢,z) with z(to) = zo has a
unique solution over [tg, tg + 4].

e If f(z) is continuous (C°) then a solution exists, but C? is not
sufficient for uniqueness.

o Sufficient condition for uniqueness: “Lipschitz continuity” (more
restrictive than CY)= Lipschitz is stronger than continuity.

R. MOKHTARI (SNL) Nonlinear Systems



Existence and Uniqueness of Solutions

Example 1: & = 2!/3,2(0) = 0.

For zg = 0, we have two solutions:

2
3

2(t) =0, and x(t)=(§t>

This function is not Lipshitz. The gradient becomes infinite at z = 0.
Example 2: f(z) = 2% — 2(t) = %0

1—xot

1) = f@)] =1y —2*| = [z +y) (= —y)| < [(z+y)| |z -yl
———

L(z,y)
Example 3: f(z) =23 = z2(t) = \/%. Interval of existence: [1,1/2x3].
a2

1f(y) — F@) =1y° —2°| = |(y* + 2y + 2*) (= — )| < |(y* + 2y + 27)| |z —
L(z,y)

f(x) = 2% and f(x) = 2 are boyth locally Lipshitz but not globally Lipshitz.

R. MOKHTARI (SNL) Nonlinear Systems



Existence and Uniqueness of Solutions

If f(.) is differentiable continuously differentiable (C!) then it is locally

Lipschitz.
Example 1:
f(x) =22 = 0f/0x = 2.
f(x) =23 = 0f/0x = 322.
Example 2:
flx) = o/ = of = 1:572/3 = Not continuous at 0.

dr 3
flz) =2yx = g—ﬁ = ﬁ = Not continuous at 0.

f(x)=sat(x)
Not differentiable at & 1 but locally Lipschitz:

|sat(x)-sat(y)|< |x-y|, L=L1.

R. MOKHTARI (SNL)
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Global Existence and Uniqueness

Let f(t,x) be piece-wise continuous in ¢ over the interval [tg, 1] and globally
Lipschitz in 2. Then

&= f(t,z), x(t) =20

has a unique solution over [tg, ¢1].

\.

Example : sat(.) is globally Lipschitz. 22 is not globally Lipschitz.

1. f(.) is C° = existence of solution z(t) on finite interval [0,¢y).

2. f(.) locally Lipschitz = existence and uniqueness on [0,ty).

3. f(.) globally Lipschitz = existence and uniqueness on [0, 00).

\. J
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Continuous Dependence on Initial Conditions
and Parameters

Theorem:(Continuous dependence on initial conditions)

Let z(t), y(t) be two solutions of & = f(t,z) starting from zy and yo and
remaining in a set with Lipschitz constant L on [0,T]. Then, for any € > 0,
there exists d(e, T") > 0 such that :

20 = yoll <& = llz(t) —y(®)|| <€, Vt € [0, T]

\

Example: 2nd order LTI system with saddle type of equilibrium point. This
example demonstrate that it is impossible to expect a small difference in trajectory
for a small difference in initial conditions.

Lipshitz continuity of f = continuity of solutions with respect to initial
conditions.
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Continuous Dependence on Initial Conditions
and Parameters

Continuous dependence on parameters

The previous Theorem also shows continuous dependence on parameter p
in f(t,x, u) if we rewrite the system equations as:

Zzg(t,x,u) X:[i] X:F(t,X):[f(t,g?,M)]
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Chapter 4: Lyapunov Stability Theory

Chapter 4: Lyapunov Stability Theory
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Chapter 4: Lyapunov Stability Theory

Stability

Stability theory is divided into three parts:
Stability of equilibrium points.
Stability of periodic orbits
Input/output stability

Alexander Mikhailovich Lyapunov (1957-1918)

Russian mathematician and physicist.

Known for his development of the
stability theory of dynamical systems.

If the total energy is dissipated, then
the system must be stable.
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Stability of Autonomous Systems
Consider the autonomous system
i = f(z) (1)

where f: D — R" is a locally Lipschitz map from a domain D C into R".
Suppose that the system (1) has an equilibrium point z € D, i.e., f(z) = 0.

Without loss of generality and the simplicity of notation, we assume the
equilibrium is located at the origin.

Vo
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Autonomous Systems : stability of an equilibrium state

Stability in the sense of Lyapunov

The equilibrium point Z = 0 of &z = f(x) is
stable, if for every € > 0 there exists § > 0 such that

[2(0)]| <& = [lz(®)]| <&Vt =0.

unstable, if it is not stable.

() X,
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Chapter 4: Lyapunov Stability Theory

Autonomous Systems : stability of an equilibrium state

[ "Stability is a property of the equilibrium, not of the system"

Stability of the equilibrium is equivalent to stability of the system only when there

exists only one equilibrium (e.g., linear systems). In this case stability = global
stability.

The region of attraction of the
equilibrium point z = 0 of (1) is is
the set of all initial conditions z(0)
for which

z(t) >0 as t— oo.

L region of
attraction
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Autonomous Systems : stability of an equilibrium state

Stability in the sense of Lyapunov

The equilibrium point Z = 0 of (1) is
attractive, if there exist ¢ such that :

l=(O) < 8 = lim (t) = 0.

local asymptotically stable (a.s) if it is stable and attractive

(1)
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Autonomous Systems : stability of an equilibrium state

The equilibrium point Z = 0 of (1) is
exponentially stable (e.s), if there exists & >, 3 > 0 and § > 0 such
that
l2(0)]] < & = [lz(®)|| < Bllz(0)]le™**, ¥t > 0

globally asymptotically stable (g.a.s) if it is stable and
globally attractive, i.e lim; ,o, z(¢) = 0. for all 2(0) € R™.

globally exponentially stable(g.e.s), for all 2(0) € R, there exists
B >0 and o > 0 such that

lz@®)ll < Bllz(0)]le™*", ¥t > 0

exponential stability is a special case of asymptotic stability.

Stability, AS, ES: local concepts (for x(0) sufficiently close to ")

\ J
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Chapter 4: Lyapunov Stability Theory

Remarks on stability

[ Attractively does not imply asymptotic stability ]

Example: Consider the second-order system with state variables x; and x5 whose
dynamics are most easily described in polar coordinates via the equations

\ \ \ \

7 = r(l—r)

6 — sin2(6/2) @ — L / //
where r = \/z% + 2% and 0 = arctan(z2/21), 7 \'/
6 € [0,2n]. /// l///
This system has two equilibrium points : e 7 P
(r*,6%*)=(0,0) and (r*,0*)=(1,0). e / / o
The fixed point at zero is clearly unstable. «—\:‘\\
The fixed point with r* = 1 attracts all other / f ﬁ NN O
trajectories, but it is not stable by any of our / / T \ \ \\\:\\\

definitions.
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Chapter 4: Lyapunov Stability Theory

Remarks on stability : Chaotic attractor

2 B ‘ ‘ 4; = \, ‘ w‘ 7
=N
i mas\\\1

Example NZ=\\/72

X2

. 2,2 AN — \M///// o
D SSEVZ

i’z 2$1.’172

o ——/)]]
All trajectories converge to . = 0 [T AN . /] |\
but . is not stable. 2t T A AN S A/ H]

-2 -1 0 1 2
X1

[ Convergence by itself does not imply Stability
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Remarks on stability

[ There exist Lyapunov-stable sets that are not attractors.

Example: stable system but not attractor

1
i)

x2

—sin(z1)

Show that an equilibrium point
o~ = [2km, 0]Tis stable but not

.attractor

2t

1 F

PN

S50 2 4 6




Remarks on stability

Example:

_ __z(0)
xffoﬁx(t)fo(O)

Z =0is GAS (but not GES).

How to check the stability properties of z = 0 WITHOUT computing
state trajectories ?

if £ =0 is A.S how to compute a region of attraction ?

The analysis of the linearized system around z = 0 MIGHT allow one
to check local stability. How to proceeed when no conclusion can be
drawn using the linearized system 7

Need of a more complete approach: Lyapunov direct method

R. MOKHTARI (SNL) Nonlinear Systems



Remarks on stability

Example
T=ar—T
Z = 0 is an equilibrium state.
Linearized system: & = ax
a<0=2z2=0is AS
a > 0= x =0 is unstable
a=07?

For a = 0 one has & = —x% and with the Lyapunov direct method one can show
that z =0 is AS.

One way to check stability is to plot trajectories and see what is going on.
This approach has limited utility because it requires solution to differential
equation (which may difficult to solve!)
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Chapter 4: Lyapunov Stability Theory

Lyapunov direct method

Example

Mi= -bili| — (koz + ki2?)

Z NL dampin i
L, Ping  NL elasticforce

Defining 1 = x and x5 = @1

L.Ul = T2 _ Cfl
. ki .3 = Ir = _ =
Tog = f—x2|x2| Mxl - Ty To

0 0
oy e |7 52| o]
T=T M

= k 2 -
ox —ko _3ka? —2posen(ay)
[ No conclusion on & = 0 using the linearized system.

(e )

} is stable/AS/ES

Ox
Eigenvalues: A\ 2 = £j/ko/M.
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Lyapunov direct method
Consider the total energy of the system:
1 1 1
Vix) = §Mx§ + ikon + Zklx‘f
kinetic potential
Remark: zero energy<x; = xo = 0 (equilibrium state)
Instantaneous energy change:
. oV dx oV v dy
1% = —— = — tl=(k kya?) iy + Maod
(x) 0z di [6361 an] [ d{% } (kox1 + k12?) 1 + Maais
k k
= (kox1 + k179) 20 + ng(—Mx2|:z:2| - Moxl - Mlx?) = —bx3|zy|

—bx3|xs| < 0 independently of 2(0) = the energy can only decrease with
time independently of z(0)
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Lyapunov direct method: a first example

TN
VA
/

v
Mo o & s N e

b
’
xa

Energy is a "measure" of the distance of x from the origin
e if it can only decrease, then £ = 0 should be stable.

Lyapunov direct method is based on energy-like functions V(x) and the
analysis of the function
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Derivative along the trajectory

Definition: Lyapunov Function

Let V : D — R be a continuously differentiable function defined in a domain
D € R™ that contains the origin. The derivative of V' along the trajectory
(solution) of & = f(x) denoted by V(x) is given by

av oV dx
(@*E = %E*VV-JC(%) e
Cevav avy| M
= |0z, 0z, 0z, :
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Lyapunov stability theory

Definition: Positive Definite Functions

A function V : D — R is positive semi definite in D if
(i). V(z) =0 if and only if z = 0.
(ii). V(x) > 0, Vzin D — {0}.
A function V' : D — R is positive definite in D if
(ii"). V(z) >0, Vzin D — {0}.
A function V : D — R is negative definite in D if —V is positive definite
(semi definite).
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Lyapunov stability theory

Examples of positive definite functions

2
V, (x)=sin(lIx|I*), pd V,(x)=IIII>, gpd V, (=111, gpsd

V,(x) pd V,(x) gpd V4(x) gpsd
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Lyapunov Stability Theorem

1. Let Z = 0 be an equilibrium for & = f(x) and D € R™ be a domain
containing = 0. If there exists a continuously differentiable function V' :
D — R such that

V(0)=0 and V(z)>0 VzeD-—{0} (positive definite)
and
V(z):=VVT(z)f(zx) <0 VzecinD (negative semidefinite)

then, z = 0 is stable.
2. If V(x) <0, Vo € D — {0} (negative definite)
then, £ = 0 is asymptotically stable.
3. If, in addition, D = R", and
|lz|| = 0o = V(z) — oo. (radially unbounded)

then x = 0 is globally asymptotically stable.

\.
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Chapter 4: Lyapunov Stability Theory

Lyapunov Stability Theorem

Example
T = —x1+ .T%
itz = I1 — X2 —17%132
Study the stability of the equilibrium state z = 0.
Take the Lyapunov function V(z) = 2% + 23 (positive definite in R?)
V(z) = §-fi(@)+ 55 fola) = 201 (—21 + 23) + 2w2(21 — 29 — 2
= —(x1—22)* —a3(1 - 21)* — 2{(1 +23)

V(x) is negative definite = the system is stable
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Lyapunov Stability Theorem

Q.why is radially unboundedness required for G.A.S 7
Example: Consider the following positive definite function

2

_ 2
Viz) = 1+m%—|—z2

if = (21,0) then ||z]] = 00 as x3 — .
But V(z) will approach 26 (not radially unbounded)

1 2
T (5)2 = 26 # o0

lim V(z)= lim

T1—>00 T1—>00 Ty
2
Vo =3
15F .. -
1
0.5 Vo=1_--
< oEIllVg=1 \
-0.5 B
Vo=0
-1
asp---Yo=3..__ PR
ER -5 Q 5 10
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Chapter 4: Lyapunov Stability Theory

Conservation and Dissipation

Conservation of energy: V(z) = g—‘;f(x) =0, i.e., the vector field f(x)

is everywhere orthogonal to the normal %—‘; to the level surface V(z) = c.

Dissipation of energy:
. ov
V(z)= %f(x) <0, ie., the vector

field f(z) and the normal %—‘z’ to the level
surface (V(x) = ¢) make an obtuse angle.

V()

T2

T

—Vgrad V(z)
Ilustration of the equation V(z) = 2T grad (V(z)) < 0
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Lyapunov Stability Theorem

Not necessary to compute state trajectories: it is enough to check the sign
of V and V in a neighborhood of the origin.

Example:
T = 1 xf + x% — 2) — 4x1x§ A
iy = mo (23 +a%— 2) + 4222,

Study the stability of the equilibrium state z =0 .
Candidate Lyapunov function: V(z) = 2% + 23
(positive definite in R?)

. ov ov
V = — —
oo 1@+ 5 fa(a)
= 2(a?+23) (2 +23-2)
In the set level 3 + 23 — 2 < 0 one has V is negative definite, therefore Z = 0 is
AS in the ball centered B /(0).
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Lyapunov Stability Theorem

The choice of the Lyapunov function is not unique.

Example 2: damped pendolum

(tl = X2
Ty = —xg —sin(xq)
Study the stability of z = [0 0]7

Lyapunov candidate function: V' (z) = (1 — cos(z1))
—_———

potential en. kinetic en.
oV ov

8Tvlf1 (z) + a—mfg(x) = sin(x1)xy + x2(—22 — sin(xy)) = —w%

V =
V is negative semi definite in R? (and then in By () => & = 0 is stable.

Physical intuition tells us the equilibrium is AS but the chosen Lyapunov
function certifies only stability
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Lyapunov instability theorem

Example Study the stability of z = 0.

T = 221+ 1 (m% + x%)
To = —2z1+ 19 (»Tl eré)
Linearized system around z = 0 P
% /,_\‘\\\\
; _ 2 / ///';\\?\\ \\
"o 2 eigenvalues : + 2j )
Ty = —2x VNN ST
\\\\“\\\\”‘/// /
~_ et
No conclusion on stability of (3). \\\\\‘:"// /
Candidate Lyapunov function: V(z) = (2% + 23)/2
1% To (2x1 + x1 (:c% -+ x%)) + x9 (—2x1 + x5 (xl + 56‘21))
= (2% + 23)(2? + 23) — positive definite in R?
Then z = 0 is unstable



Invariance Principle: Krasovskii-Lasalle LaSalle’s Theorem

LaSalle’s invariance principle is a tool for assessing asymptotic stability
properties of = 0 for & = f(z) when V() is only semi-definite

\

A set G C R™ is (positively) invariant for & = f(z) if

x()GGﬁ(b(t,‘%o)GG, Vi > 0.

G
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Chapter 4: Lyapunov Stability Theory
Invariance Principle: Local LaSalle theorem

Theorem: LaSalle's Invariance Principle

Let & = f(x) be a be a system with a
compact positively invariant set € and let
Viasalle(x) be a continuously differentiable
function with

Wasalle <0

for all x € Q. Further, let N denote the
set of all points z € ) with

VLaSaIIe =0

and let M denote the largest invariant set
in N. In this case all solutions z(t) that
start within € tend to the set M fort — oo
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Chapter 4: Lyapunov Stability Theory

Invariance Principle: Local LaSalle theorem

The theorem provides sufficient conditions for €2 to be a region of
attraction for the set M

Notable case: when M = {0} the theorem gives a region of attraction
(asymptotic stability ) for the equilibrium state z = 0.
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Invariance Principle: Local LaSalle theorem

Example: Consider the system

. O] AY
{ r1 = X2 ’

Ty = —%sin(wl)—ﬁxg

Consider the Lyapunov function

V(z) =

~I

1
(1 —coszy)+ 5333
potential en. kinetic en.
V(0)=0
V(x)>0 if z1 € (—2m,2m)
Then V is positive definite in Bo7(0)

V(z) =

~l

Sinx1241 4+ Toko = ——x% <0
m

Then S := {(z1,x2)|z2 = 0}, i.e., z1 can be anything and S'is the z-axis.
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Invariance Principle: Local LaSalle theorem

Q. what is the largest invariant set ?

l. 2o =0=1i,=0

2. iy =0=—%sin(z;) — %.0 = —¥sin(x)

sin(x1) = 0 must be satisfied. Locally, on the set of 21 € (—m,7), this is only

=2\ \\&\\?\v

D NESNIN
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Lyapunov theory for LTI systems

Let = = be an equilibrium for the autonomous nonlinear system

= f(x) (6)

where f : D — R"™ is a continuously differentiable function and D is a
neighborhood of x. Let

_of

Then:
Z is aymptotically stable if Re();)<0 for all eigenvalues of A.
Z is stable if Re()\;)<0 and Re(\;)=0 for one of the eigenvalues of A.
% is unstable if Re()\;)>0 for one or more of the eigenvalues of A.
In linear systems, local stability <= global stability.

In nonlinear systems, this is not true.
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Chapter 4: Lyapunov Stability Theory

Lyapunov theory for LTI systems

Review: Positive Definite Matrices

Symmetric matrix M = M7 is
1. positive definite (pd) if 27 Mz > 0, Vz # 0.
2. positive semi-definite (psd) if 27 Mz > 0, V2 € R™.

Lemma:
M=MT>0+<=\M)>0
M=MT>0<=)\(M)>0

Properties of the quadratic function 27 M«

From (1) and (2) one has
if M >0, V(z)=2TMz is a positive definite (pd) function.
if M >0, V(z)=2TMz is a positive semi-definite (pd) function.

\.
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Chapter 4: Lyapunov Stability Theory

Lyapunov functions for LTI systems

Lyapunov functions for LTI systems

For linear system & = Ax.
Consider as Lyapunov candidate function V(z) = 27 Pz, P = PT > 0.

V' (z) is quadratic, gpd and radially unbounded.
V(z) = #TPz + TP = zT(ATP + PA)x
If ATP+ PA <0, i.e. thereis Q > 0 symmetric such that

ATP+PA=—-Q (7)

then V is globally negative definite and by the second Lyapunov method the
origin is globally asymptotically stable.

ATP + PA = —Q is called Lyapunov equation
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Lyapunov theorem for LTI systems

For LTI systems it is enough to consider quadratic Lyapunov
functions.

Algorithm:

o choose Q@ >0 (e.g. Q=I)

o solve ATP 4 PA = —Q (linear systems in the entries of the
symmetric matrix P)

e The LTI system is AS if and only if P >0

Example:

Eigenvalues of A : {—1,—3} = (global) asymptotic stability.

Choose @ = QT = Ipyy. Let P = [ b P12 ] , where p1y = pa1.
P21 D22
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Lyapunov theorem for LTI systems

Solve the Lyapunov equation ATP 4+ PA = —Q

-1 0 P pi2 | | P Pr2 -1 4 _ -1 0
4 -3 P21 P22 P21 D22 0 -3 0 -1
—2p11 —4p12 + 4p11 _ -1 0
—4p12 +4p11 8piz — 6p22 0 -1
Solving for p11,p12 and pas gives
2pn = -1
—4pi2 +4p11 = 0
8p12 —6p2 = -1

Solving the linear systems one gets

P=| 1z 36>

Since P > ) = the systems is AS.



Chapter 4: Lyapunov Stability Theory

Example

G = { (1) :126 ] x Eigenvalues of A : {-1 ﬂ:j\/ﬁ}
A

Solve PA + ATP = —Q for P:

1 0 0.33 —0.5 0.41 —0.19 0.12 —0.21
Q= [ 0 1 ] =P = [ —0.5 4.25 ]’QQ_ [ ~0.19  0.11 }é%—[ —0.21  1.67 }

15
6 =z Pox 0
4 constant
5
2
o0 X0
= Y =zT Pz
-5
N constant
-10
- (x(t h Yo (x(t
iy -15
-30 -20 -10 0 10 20 30 -50 o 50
x X

any choice of @ > 0 gives P > 0 (since A is strictly stable)
but not every P > 0 gives Q) > 0
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