

Analyse de données Chapitre 2: Statistique Descriptive

Présentée par:

Dr Imane NEDJAR

Introduction

L'objectif de la Statistique Descriptive est de décrire les données observées pour mieux les analyser

- **Description de données**
- Valeurs centrales
- Indicateurs de dispersion

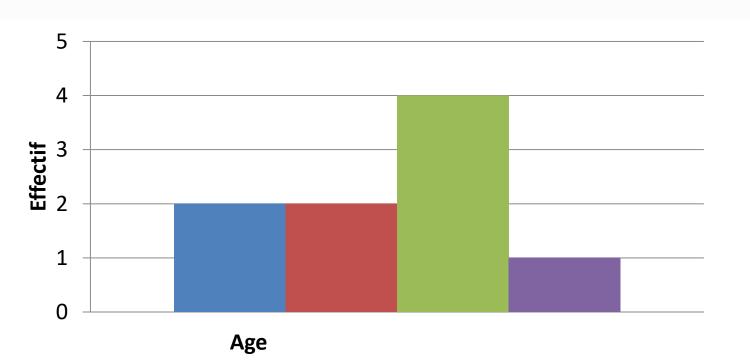
Description de données

Variable

Nom des Fournisseurs	Sexe	Age	Chiffre d'affaire
Mohamed	Н	40	Modéré
Sarah	F	50	Important
Ismail	Н	44	Moyen
Ilyes	Н	50	Modéré
Hanane	F	35	Important
Ghouti	Н	60	Moyen
Yasmina	F	55	Modéré
Fatima	F	35	Moyen

■ Modalité

Population: Fournisseurs


Individu

Description de données

Effectifs

La variable Age

Age	35	40	50	55
Effectifs	2	2	4	1

Nom des Fournisseurs	Sexe	Age	Chiffre d'affaire
Mohamed	Н	40	Modéré
Sarah	F	50	Important
Ismail	Н	40	Moyen
Ilyes	Н	50	Modéré
Hanane	F	35	Important
Ghouti	Н	50	Moyen
Yasmina	F	55	Modéré
Fatima	F	35	Moyen
Karima	F	50	Important

35

40

50

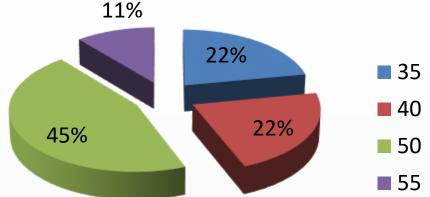
55

Description de données

Fréquence

Fréquence de la modalité « M » d'une variable qualitative (FM)

$$F_{M} = \frac{Effe_corresp_M}{Effe_Total}$$


Pourcentage

Pourcentage des individus correspondant à la modalité « M »

$$P_M = F_M \times 100$$

Effectifs	Fréquences	Pourcentage
2	2/9=0.22	22%
2	2/9=0.22	22%
4	4/9=0.45	45%
1	1/9=0.11	11%
Total Effectifs «9»	Total Fréquences « 1 »	Total Pourcentage 100
	2 2 4 1	2 2/9=0.22 2 2/9=0.22 4 4/9=0.45 1 1/9=0.11

Diagramme en secteurs de l'Age

Valeurs centrales

Le mode

Correspond à la valeur de la variable pour laquelle l'effectif (ou la fréquence) est le plus grand.

Age	35	40	50)	55
Effectifs	2	2	4	1

La médiane

C'est le nombre qui sépare la série ordonnée en deux groupes de même effectif.

On écrit la liste de toutes les valeurs de la série par ordre croissant, chacune d'elle répétée autant de fois que son effectif

- ➤Si le nombre de valeurs est impair, la médiane est la valeur du milieu
- ➤S'il est pair, la médiane est la demi-somme des deux valeurs du milieu

Exemple 1:35 35 40 40 50 50 50 50 55 ->50

Exemple 2:10 20 40 50 ->30

Valeurs centrales

La moyenne arithmétique

On dispose d'une population de N individus et on observe X1, X2,...., Xn les valeurs d'une variable quantitative discrète X pour ces individus.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Age	35	40	50	55
Effectifs	2	2	4	1

$$\bar{x} = 45$$

L'étendue

L'étendue Ex de la variable quantitative discrète X est la différence entre la plus grande et la plus petite des valeurs observées

$$Ex=max(xi)-min(xi)$$

La variance

- •La variance est une mesure de la dispersion d'une série de données.
- Une variance faible indique que les nombres de la série de données sont proches l'un de l'autre.
- Une variance élevée indique que les nombres sont très distants.

La variance

La variance d'une population

La variance d'un échantillon

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

$$s^{2}(x) = \frac{\sum (x_{i} - \bar{x})^{2}}{n-1}$$

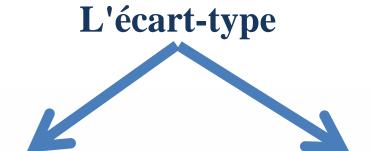
→ On divise par n-1 pour que l'écart-type de l'échantillon soit un bon estimateur de l'écart-type de la population.
pour plus de détails voir → Loi de Bessel

La variance

Age	35	40	50	55
Effectifs	2	2	4	1

Variance = Moyenne $(n_i x_i^2) - Moy^2$

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

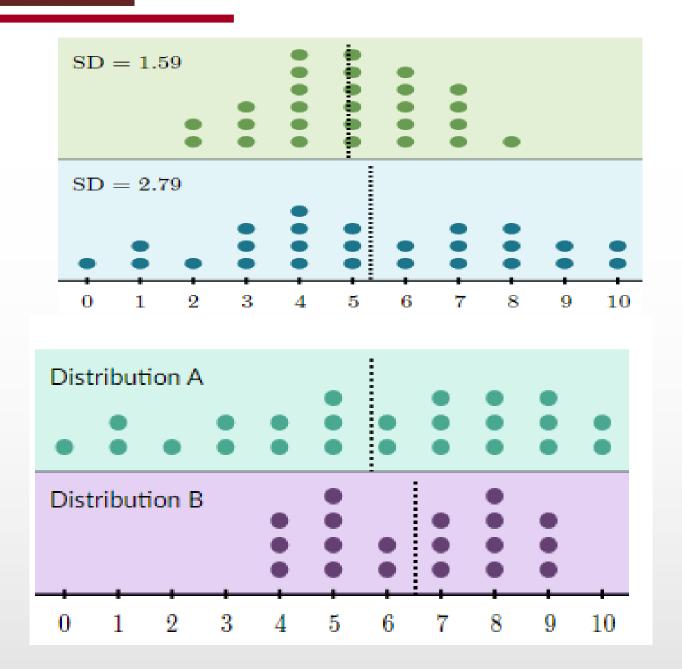


$$\sigma^2 = \frac{1}{N} \left(\sum n_i x_i^2 \right) - \mu^2$$

L'écart-type

- →L'écart-type est une mesure de la dispersion d'une série statistique autour de sa moyenne.
- → Plus la distribution est dispersée c'est-à-dire les valeurs ne sont pas concentrées autour de la moyenne, plus l'écart-type sera élevé.

$$Ecart - type(x) = \sqrt{\operatorname{var}(x)}$$


L'écart-type d'une population

L'écart-type d'un échantillon

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

$$s(x) = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

→ On divise par n-1 pour que l'écart-type de l'échantillon soit un bon estimateur de l'écart-type de la population.
pour plus de détails voir → Loi de Bessel

